Creep property of composite solders reinforced by nano-sized particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-06-09

AUTHORS

Yaowu Shi, Jianping Liu, Zhidong Xia, Yongping Lei, Fu Guo, Xiaoyan Li

ABSTRACT

In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content. More... »

PAGES

349-356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10854-007-9327-0

DOI

http://dx.doi.org/10.1007/s10854-007-9327-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052964782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yaowu", 
        "id": "sg:person.010147557037.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianping", 
        "id": "sg:person.012406632313.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Zhidong", 
        "id": "sg:person.016447555263.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Yongping", 
        "id": "sg:person.012521025203.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Fu", 
        "id": "sg:person.014627203474.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaoyan", 
        "id": "sg:person.014361463331.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10854-006-9019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042742091", 
          "https://doi.org/10.1007/s10854-006-9019-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011264527894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018608821", 
          "https://doi.org/10.1023/a:1011264527894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01141557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552629", 
          "https://doi.org/10.1007/bf01141557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-001-0132-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006237014", 
          "https://doi.org/10.1007/s11664-001-0132-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-005-0197-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038707430", 
          "https://doi.org/10.1007/s11664-005-0197-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-004-0022-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031994706", 
          "https://doi.org/10.1007/s11664-004-0022-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-998-0072-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785954", 
          "https://doi.org/10.1007/s11664-998-0072-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06-09", 
    "datePublishedReg": "2007-06-09", 
    "description": "In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10854-007-9327-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136825", 
        "issn": [
          "0957-4522", 
          "1573-482X"
        ], 
        "name": "Journal of Materials Science: Materials in Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "creep rupture life", 
      "composite solder", 
      "composite solder joints", 
      "rupture life", 
      "solder joints", 
      "reinforcement particles", 
      "nano-sized reinforcements", 
      "volume fraction", 
      "lead-free solders", 
      "optimum volume fraction", 
      "eutectic Sn37Pb solder", 
      "applied stress level", 
      "nano-sized Ag", 
      "nano-sized particles", 
      "content of particles", 
      "reinforcement content", 
      "creep resistance", 
      "creep properties", 
      "testing temperature", 
      "Sn37Pb solder", 
      "oxide Al2O3", 
      "optimum content", 
      "test temperature", 
      "solder", 
      "applied stress", 
      "particle content", 
      "volume percentage", 
      "Sn37Pb", 
      "life tests", 
      "reinforcement", 
      "stress levels", 
      "metallic Cu", 
      "particles", 
      "joints", 
      "present work", 
      "certain value", 
      "temperature", 
      "properties", 
      "Al2O3", 
      "Ag", 
      "content", 
      "efficiency", 
      "stress", 
      "resistance", 
      "fraction", 
      "Cu", 
      "increase", 
      "work", 
      "test", 
      "results", 
      "effect", 
      "values", 
      "life", 
      "series", 
      "percentage", 
      "levels", 
      "nano-sized metallic Cu", 
      "nano-sized oxide Al2O3", 
      "TiO2 reinforcement particles", 
      "maximum creep rupture life", 
      "creep rupture life test", 
      "rupture life test", 
      "small single-lap tensile-shear joints", 
      "single-lap tensile-shear joints", 
      "tensile-shear joints", 
      "own optimum content"
    ], 
    "name": "Creep property of composite solders reinforced by nano-sized particles", 
    "pagination": "349-356", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052964782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10854-007-9327-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10854-007-9327-0", 
      "https://app.dimensions.ai/details/publication/pub.1052964782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10854-007-9327-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10854-007-9327-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10854-007-9327-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10854-007-9327-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10854-007-9327-0'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      22 PREDICATES      98 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10854-007-9327-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6641cae3b0c54e42aa34d0ff3691f5c5
4 schema:citation sg:pub.10.1007/bf01141557
5 sg:pub.10.1007/s10854-006-9019-1
6 sg:pub.10.1007/s11664-001-0132-x
7 sg:pub.10.1007/s11664-004-0022-0
8 sg:pub.10.1007/s11664-005-0197-z
9 sg:pub.10.1007/s11664-998-0072-9
10 sg:pub.10.1023/a:1011264527894
11 schema:datePublished 2007-06-09
12 schema:datePublishedReg 2007-06-09
13 schema:description In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N48b7c5f1b69a4f6ca6499d7af7756bc4
18 Nd6da70c0a9dc4436953f4de1311acccb
19 sg:journal.1136825
20 schema:keywords Ag
21 Al2O3
22 Cu
23 Sn37Pb
24 Sn37Pb solder
25 TiO2 reinforcement particles
26 applied stress
27 applied stress level
28 certain value
29 composite solder
30 composite solder joints
31 content
32 content of particles
33 creep properties
34 creep resistance
35 creep rupture life
36 creep rupture life test
37 effect
38 efficiency
39 eutectic Sn37Pb solder
40 fraction
41 increase
42 joints
43 lead-free solders
44 levels
45 life
46 life tests
47 maximum creep rupture life
48 metallic Cu
49 nano-sized Ag
50 nano-sized metallic Cu
51 nano-sized oxide Al2O3
52 nano-sized particles
53 nano-sized reinforcements
54 optimum content
55 optimum volume fraction
56 own optimum content
57 oxide Al2O3
58 particle content
59 particles
60 percentage
61 present work
62 properties
63 reinforcement
64 reinforcement content
65 reinforcement particles
66 resistance
67 results
68 rupture life
69 rupture life test
70 series
71 single-lap tensile-shear joints
72 small single-lap tensile-shear joints
73 solder
74 solder joints
75 stress
76 stress levels
77 temperature
78 tensile-shear joints
79 test
80 test temperature
81 testing temperature
82 values
83 volume fraction
84 volume percentage
85 work
86 schema:name Creep property of composite solders reinforced by nano-sized particles
87 schema:pagination 349-356
88 schema:productId Nbd4f38b21f704916974bab47705138f4
89 Nca87f342795949e083fa91a6a5c4356f
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052964782
91 https://doi.org/10.1007/s10854-007-9327-0
92 schema:sdDatePublished 2021-12-01T19:18
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nb0d4b3e99d7a49b7bc07b9c5292aaea8
95 schema:url https://doi.org/10.1007/s10854-007-9327-0
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N23365bbc4f4649f19f35e8fabd492db7 rdf:first sg:person.012521025203.12
100 rdf:rest Nc88cf4358d44498888d9911742451664
101 N2c5c1288968d483b9a1039a12d7c954c rdf:first sg:person.016447555263.38
102 rdf:rest N23365bbc4f4649f19f35e8fabd492db7
103 N41cc85e3e722422f82def3bc775946eb rdf:first sg:person.014361463331.82
104 rdf:rest rdf:nil
105 N48b7c5f1b69a4f6ca6499d7af7756bc4 schema:issueNumber 4
106 rdf:type schema:PublicationIssue
107 N6641cae3b0c54e42aa34d0ff3691f5c5 rdf:first sg:person.010147557037.66
108 rdf:rest Nb57d80c3e044442890989665c232e101
109 Nb0d4b3e99d7a49b7bc07b9c5292aaea8 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nb57d80c3e044442890989665c232e101 rdf:first sg:person.012406632313.23
112 rdf:rest N2c5c1288968d483b9a1039a12d7c954c
113 Nbd4f38b21f704916974bab47705138f4 schema:name doi
114 schema:value 10.1007/s10854-007-9327-0
115 rdf:type schema:PropertyValue
116 Nc88cf4358d44498888d9911742451664 rdf:first sg:person.014627203474.59
117 rdf:rest N41cc85e3e722422f82def3bc775946eb
118 Nca87f342795949e083fa91a6a5c4356f schema:name dimensions_id
119 schema:value pub.1052964782
120 rdf:type schema:PropertyValue
121 Nd6da70c0a9dc4436953f4de1311acccb schema:volumeNumber 19
122 rdf:type schema:PublicationVolume
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1136825 schema:issn 0957-4522
130 1573-482X
131 schema:name Journal of Materials Science: Materials in Electronics
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.010147557037.66 schema:affiliation grid-institutes:grid.28703.3e
135 schema:familyName Shi
136 schema:givenName Yaowu
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147557037.66
138 rdf:type schema:Person
139 sg:person.012406632313.23 schema:affiliation grid-institutes:grid.28703.3e
140 schema:familyName Liu
141 schema:givenName Jianping
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406632313.23
143 rdf:type schema:Person
144 sg:person.012521025203.12 schema:affiliation grid-institutes:grid.28703.3e
145 schema:familyName Lei
146 schema:givenName Yongping
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521025203.12
148 rdf:type schema:Person
149 sg:person.014361463331.82 schema:affiliation grid-institutes:grid.28703.3e
150 schema:familyName Li
151 schema:givenName Xiaoyan
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361463331.82
153 rdf:type schema:Person
154 sg:person.014627203474.59 schema:affiliation grid-institutes:grid.28703.3e
155 schema:familyName Guo
156 schema:givenName Fu
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014627203474.59
158 rdf:type schema:Person
159 sg:person.016447555263.38 schema:affiliation grid-institutes:grid.28703.3e
160 schema:familyName Xia
161 schema:givenName Zhidong
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447555263.38
163 rdf:type schema:Person
164 sg:pub.10.1007/bf01141557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552629
165 https://doi.org/10.1007/bf01141557
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10854-006-9019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042742091
168 https://doi.org/10.1007/s10854-006-9019-1
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11664-001-0132-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006237014
171 https://doi.org/10.1007/s11664-001-0132-x
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11664-004-0022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994706
174 https://doi.org/10.1007/s11664-004-0022-0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11664-005-0197-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038707430
177 https://doi.org/10.1007/s11664-005-0197-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s11664-998-0072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785954
180 https://doi.org/10.1007/s11664-998-0072-9
181 rdf:type schema:CreativeWork
182 sg:pub.10.1023/a:1011264527894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018608821
183 https://doi.org/10.1023/a:1011264527894
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.28703.3e schema:alternateName School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China
186 schema:name School of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, 100022, Beijing, P.R. China
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...