Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-09-16

AUTHORS

Cheng-Chao Hu, Zhao Zhang, Xiao-Xing Cheng, Hou-Bing Huang, Yang-Guang Shi, Long-Qing Chen

ABSTRACT

The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently been extended to ferromagnets, especially for the magnetostrictive materials. Here, guided by phenomenological theories and phase-field simulations, we proposed a design strategy for obtaining the ultrasensitive magnetoelastic response at the pre-transitional rhombohedral side of ferromagnetic MPB, by further flattening the energy landscape while maintaining large intrinsic magnetostriction. To validate this, we judiciously introduced the light-rare-earth-based Tb0.1Pr0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.1}\hbox {Pr}_{0.9}$$\end{document} system to the Co-doped Tb0.27Dy0.73Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.27}\hbox {Dy}_{0.73}\hbox {Fe}_{2}$$\end{document} alloy, as Tb0.1Pr0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.1}\hbox {Pr}_{0.9}$$\end{document} is an anisotropy compensation system with large intrinsic strains and the transition metal dopant of Co tends to optimize the magnetostriction. Phase-field modeling was used to determine the detailed magnetic domain evolution of the investigated multi-component Laves phase compounds, the results of which were compared with experimental results. At room temperature, an ultrahigh magnetoelastic response d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{33}$$\end{document} was found in Tb0.253Dy0.657Pr0.09(Fe0.9Co0.1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.253}\hbox {Dy}_{0.657}\hbox {Pr}_{0.09}(\hbox {Fe}_{0.9}\hbox {Co}_{0.1})_{2}$$\end{document} recompensation system especially at low fields, which is superior to that of the commercial Tb0.27Dy0.73Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.27}\hbox {Dy}_{0.73}\hbox {Fe}_{2}$$\end{document} (Terfenol-D) polycrystal. The ultrahigh magnetostrictive sensitivity, together with low raw material cost makes it one of the strongest candidates for magnetostriction applications.Graphic abstract More... »

PAGES

1713-1729

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-020-05300-3

DOI

http://dx.doi.org/10.1007/s10853-020-05300-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130895881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China", 
          "id": "http://www.grid.ac/institutes/grid.411351.3", 
          "name": [
            "School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Cheng-Chao", 
        "id": "sg:person.014323423157.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014323423157.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China", 
          "id": "http://www.grid.ac/institutes/grid.411351.3", 
          "name": [
            "School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhao", 
        "id": "sg:person.015464177503.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464177503.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xiao-Xing", 
        "id": "sg:person.0737262425.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737262425.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.43555.32", 
          "name": [
            "Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Hou-Bing", 
        "id": "sg:person.01233713660.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233713660.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yang-Guang", 
        "id": "sg:person.014367345751.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367345751.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Long-Qing", 
        "id": "sg:person.01276672445.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276672445.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41524-017-0039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092072313", 
          "https://doi.org/10.1038/s41524-017-0039-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-019-03862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120188991", 
          "https://doi.org/10.1007/s10853-019-03862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-009-3663-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045317468", 
          "https://doi.org/10.1007/s10853-009-3663-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-1794-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092616687", 
          "https://doi.org/10.1007/s10853-017-1794-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41563-018-0034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101562200", 
          "https://doi.org/10.1038/s41563-018-0034-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-018-0114-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107926144", 
          "https://doi.org/10.1038/s41524-018-0114-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-09-16", 
    "datePublishedReg": "2020-09-16", 
    "description": "The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently been extended to ferromagnets, especially for the magnetostrictive materials. Here, guided by phenomenological theories and phase-field simulations, we proposed a design strategy for obtaining the ultrasensitive magnetoelastic response at the pre-transitional rhombohedral side of ferromagnetic MPB, by further flattening the energy landscape while maintaining large intrinsic magnetostriction. To validate this, we judiciously introduced the light-rare-earth-based Tb0.1Pr0.9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Tb}_{0.1}\\hbox {Pr}_{0.9}$$\\end{document} system to the Co-doped Tb0.27Dy0.73Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Tb}_{0.27}\\hbox {Dy}_{0.73}\\hbox {Fe}_{2}$$\\end{document} alloy, as Tb0.1Pr0.9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Tb}_{0.1}\\hbox {Pr}_{0.9}$$\\end{document} is an anisotropy compensation system with large intrinsic strains and the transition metal dopant of Co tends to optimize the magnetostriction. Phase-field modeling was used to determine the detailed magnetic domain evolution of the investigated multi-component Laves phase compounds, the results of which were compared with experimental results. At room temperature, an ultrahigh magnetoelastic response d33\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${d}_{33}$$\\end{document} was found in Tb0.253Dy0.657Pr0.09(Fe0.9Co0.1)2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Tb}_{0.253}\\hbox {Dy}_{0.657}\\hbox {Pr}_{0.09}(\\hbox {Fe}_{0.9}\\hbox {Co}_{0.1})_{2}$$\\end{document} recompensation system especially at low fields, which is superior to that of the commercial Tb0.27Dy0.73Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {Tb}_{0.27}\\hbox {Dy}_{0.73}\\hbox {Fe}_{2}$$\\end{document} (Terfenol-D) polycrystal. The ultrahigh magnetostrictive sensitivity, together with low raw material cost makes it one of the strongest candidates for magnetostriction applications.Graphic abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-020-05300-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8274739", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4321106", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4803"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "morphotropic phase boundary", 
      "rhombohedral side", 
      "magnetoelastic response", 
      "low raw material cost", 
      "ferromagnetic morphotropic phase boundary", 
      "phase-field modeling", 
      "phase-field simulations", 
      "phase boundary", 
      "raw material cost", 
      "magnetostrictive materials", 
      "magnetostrictive response", 
      "anisotropy compensation system", 
      "material cost", 
      "transition metal dopants", 
      "intrinsic magnetostriction", 
      "intrinsic strain", 
      "magnetic domain evolution", 
      "metal dopants", 
      "room temperature", 
      "magnetostriction applications", 
      "domain evolution", 
      "experimental results", 
      "design strategy", 
      "phase compounds", 
      "magnetostriction", 
      "low fields", 
      "compensation system", 
      "alloy", 
      "phenomenological theory", 
      "Laves phase compounds", 
      "boundaries", 
      "ferroelectrics", 
      "polycrystals", 
      "dopants", 
      "strong candidate", 
      "simulations", 
      "system", 
      "temperature", 
      "materials", 
      "modeling", 
      "CO", 
      "side", 
      "applications", 
      "results", 
      "cost", 
      "field", 
      "ferromagnet", 
      "energy landscape", 
      "strains", 
      "candidates", 
      "evolution", 
      "sensitivity", 
      "response", 
      "theory", 
      "strategies", 
      "compounds", 
      "landscape"
    ], 
    "name": "Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary", 
    "pagination": "1713-1729", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130895881"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-020-05300-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-020-05300-3", 
      "https://app.dimensions.ai/details/publication/pub.1130895881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_856.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-020-05300-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-020-05300-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-020-05300-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-020-05300-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-020-05300-3'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      87 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-020-05300-3 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N3d1bd3b161ca43589ff71d28bbd43b8e
4 schema:citation sg:pub.10.1007/s10853-009-3663-9
5 sg:pub.10.1007/s10853-017-1794-y
6 sg:pub.10.1007/s10853-019-03862-5
7 sg:pub.10.1038/s41524-017-0039-6
8 sg:pub.10.1038/s41524-018-0114-7
9 sg:pub.10.1038/s41563-018-0034-4
10 schema:datePublished 2020-09-16
11 schema:datePublishedReg 2020-09-16
12 schema:description The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently been extended to ferromagnets, especially for the magnetostrictive materials. Here, guided by phenomenological theories and phase-field simulations, we proposed a design strategy for obtaining the ultrasensitive magnetoelastic response at the pre-transitional rhombohedral side of ferromagnetic MPB, by further flattening the energy landscape while maintaining large intrinsic magnetostriction. To validate this, we judiciously introduced the light-rare-earth-based Tb0.1Pr0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.1}\hbox {Pr}_{0.9}$$\end{document} system to the Co-doped Tb0.27Dy0.73Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.27}\hbox {Dy}_{0.73}\hbox {Fe}_{2}$$\end{document} alloy, as Tb0.1Pr0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.1}\hbox {Pr}_{0.9}$$\end{document} is an anisotropy compensation system with large intrinsic strains and the transition metal dopant of Co tends to optimize the magnetostriction. Phase-field modeling was used to determine the detailed magnetic domain evolution of the investigated multi-component Laves phase compounds, the results of which were compared with experimental results. At room temperature, an ultrahigh magnetoelastic response d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{33}$$\end{document} was found in Tb0.253Dy0.657Pr0.09(Fe0.9Co0.1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.253}\hbox {Dy}_{0.657}\hbox {Pr}_{0.09}(\hbox {Fe}_{0.9}\hbox {Co}_{0.1})_{2}$$\end{document} recompensation system especially at low fields, which is superior to that of the commercial Tb0.27Dy0.73Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Tb}_{0.27}\hbox {Dy}_{0.73}\hbox {Fe}_{2}$$\end{document} (Terfenol-D) polycrystal. The ultrahigh magnetostrictive sensitivity, together with low raw material cost makes it one of the strongest candidates for magnetostriction applications.Graphic abstract
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N011170e6c8fd49cabca8585ef17181c2
16 N2689951e1a71403488d22a990efe068c
17 sg:journal.1312116
18 schema:keywords CO
19 Laves phase compounds
20 alloy
21 anisotropy compensation system
22 applications
23 boundaries
24 candidates
25 compensation system
26 compounds
27 cost
28 design strategy
29 domain evolution
30 dopants
31 energy landscape
32 evolution
33 experimental results
34 ferroelectrics
35 ferromagnet
36 ferromagnetic morphotropic phase boundary
37 field
38 intrinsic magnetostriction
39 intrinsic strain
40 landscape
41 low fields
42 low raw material cost
43 magnetic domain evolution
44 magnetoelastic response
45 magnetostriction
46 magnetostriction applications
47 magnetostrictive materials
48 magnetostrictive response
49 material cost
50 materials
51 metal dopants
52 modeling
53 morphotropic phase boundary
54 phase boundary
55 phase compounds
56 phase-field modeling
57 phase-field simulations
58 phenomenological theory
59 polycrystals
60 raw material cost
61 response
62 results
63 rhombohedral side
64 room temperature
65 sensitivity
66 side
67 simulations
68 strains
69 strategies
70 strong candidate
71 system
72 temperature
73 theory
74 transition metal dopants
75 schema:name Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary
76 schema:pagination 1713-1729
77 schema:productId N421e7f7f965d45259c42ff2e2f44b299
78 Nfe1ebfb703c348a5b3503f56f3805cfc
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130895881
80 https://doi.org/10.1007/s10853-020-05300-3
81 schema:sdDatePublished 2022-09-02T16:06
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nc3d622e95a514de4a3cb61c157fe4265
84 schema:url https://doi.org/10.1007/s10853-020-05300-3
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N011170e6c8fd49cabca8585ef17181c2 schema:volumeNumber 56
89 rdf:type schema:PublicationVolume
90 N2689951e1a71403488d22a990efe068c schema:issueNumber 2
91 rdf:type schema:PublicationIssue
92 N2b9b366842a946b8bbc017ab573d29aa rdf:first sg:person.01276672445.73
93 rdf:rest rdf:nil
94 N3d1bd3b161ca43589ff71d28bbd43b8e rdf:first sg:person.014323423157.89
95 rdf:rest N7c8c97c400bc4f5a8298884dc0eb0445
96 N421e7f7f965d45259c42ff2e2f44b299 schema:name dimensions_id
97 schema:value pub.1130895881
98 rdf:type schema:PropertyValue
99 N7c8c97c400bc4f5a8298884dc0eb0445 rdf:first sg:person.015464177503.21
100 rdf:rest Nc297fa5907ec4cb7a5d68df996856379
101 Na40535e0049e4405832e3aa3a31a9633 rdf:first sg:person.01233713660.03
102 rdf:rest Nf56a0a7cf76d4078ab79f81f5f5bad82
103 Nc297fa5907ec4cb7a5d68df996856379 rdf:first sg:person.0737262425.04
104 rdf:rest Na40535e0049e4405832e3aa3a31a9633
105 Nc3d622e95a514de4a3cb61c157fe4265 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nf56a0a7cf76d4078ab79f81f5f5bad82 rdf:first sg:person.014367345751.46
108 rdf:rest N2b9b366842a946b8bbc017ab573d29aa
109 Nfe1ebfb703c348a5b3503f56f3805cfc schema:name doi
110 schema:value 10.1007/s10853-020-05300-3
111 rdf:type schema:PropertyValue
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
116 schema:name Inorganic Chemistry
117 rdf:type schema:DefinedTerm
118 sg:grant.4321106 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-020-05300-3
119 rdf:type schema:MonetaryGrant
120 sg:grant.8274739 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-020-05300-3
121 rdf:type schema:MonetaryGrant
122 sg:journal.1312116 schema:issn 0022-2461
123 1573-4803
124 schema:name Journal of Materials Science
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.01233713660.03 schema:affiliation grid-institutes:grid.43555.32
128 schema:familyName Huang
129 schema:givenName Hou-Bing
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233713660.03
131 rdf:type schema:Person
132 sg:person.01276672445.73 schema:affiliation grid-institutes:grid.29857.31
133 schema:familyName Chen
134 schema:givenName Long-Qing
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276672445.73
136 rdf:type schema:Person
137 sg:person.014323423157.89 schema:affiliation grid-institutes:grid.411351.3
138 schema:familyName Hu
139 schema:givenName Cheng-Chao
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014323423157.89
141 rdf:type schema:Person
142 sg:person.014367345751.46 schema:affiliation grid-institutes:grid.64938.30
143 schema:familyName Shi
144 schema:givenName Yang-Guang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367345751.46
146 rdf:type schema:Person
147 sg:person.015464177503.21 schema:affiliation grid-institutes:grid.411351.3
148 schema:familyName Zhang
149 schema:givenName Zhao
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464177503.21
151 rdf:type schema:Person
152 sg:person.0737262425.04 schema:affiliation grid-institutes:grid.29857.31
153 schema:familyName Cheng
154 schema:givenName Xiao-Xing
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737262425.04
156 rdf:type schema:Person
157 sg:pub.10.1007/s10853-009-3663-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045317468
158 https://doi.org/10.1007/s10853-009-3663-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10853-017-1794-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616687
161 https://doi.org/10.1007/s10853-017-1794-y
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10853-019-03862-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120188991
164 https://doi.org/10.1007/s10853-019-03862-5
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/s41524-017-0039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092072313
167 https://doi.org/10.1038/s41524-017-0039-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/s41524-018-0114-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107926144
170 https://doi.org/10.1038/s41524-018-0114-7
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/s41563-018-0034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101562200
173 https://doi.org/10.1038/s41563-018-0034-4
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.29857.31 schema:alternateName Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA
176 schema:name Department of Materials Science and Engineering, The Pennsylvania State University, 16802, University Park, PA, USA
177 rdf:type schema:Organization
178 grid-institutes:grid.411351.3 schema:alternateName School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China
179 schema:name School of Materials Science and Engineering, Liaocheng University, 252059, Liaocheng, China
180 rdf:type schema:Organization
181 grid-institutes:grid.43555.32 schema:alternateName Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China
182 schema:name Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, 100081, Beijing, China
183 rdf:type schema:Organization
184 grid-institutes:grid.64938.30 schema:alternateName Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
185 schema:name Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...