Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-28

AUTHORS

Jingcai Xu, Jing Wang, Bo Hong, Xiaoling Peng, Xinqing Wang, Hongliang Ge, Jun Hu

ABSTRACT

Single crystalline Ni gradient–diameter magnetic nanowire arrays (GDMNWs) with different D/d (the diameter of thick end (D) and thin end (d) of GDMNWs) were successfully prepared by constant potential electrodeposition into a tapered anodic aluminum oxide template. The TEM images of samples illustrated that the obvious gradient–diameter nanowires had been obtained. The HRTEM, SAED images and XRD pattern demonstrated that the nanowire arrays grew with Ni single crystal structures. The magnetic interaction of GDMNWs was investigated by first-order reversal curves (FORCs) and δM(H) plots. The FORCs diagrams and δM(H) plots of different D/d ratio were compared and indicated that the magnetic interaction of GDMNWs with a thin end was dominated by dipolar interaction, and the thick end was dominated by exchange interaction. There was a gradient overlap effect in dipolar interaction and exchange interaction between the thin end and thick end. The spatial distributions of such unique magnetic interaction of GDMNWs were likely to produce entirely new physical characteristics of memory effect and tunable ferromagnetic resonance. More... »

PAGES

11538-11545

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-019-03694-3

DOI

http://dx.doi.org/10.1007/s10853-019-03694-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115968337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jingcai", 
        "id": "sg:person.011763157753.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763157753.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jing", 
        "id": "sg:person.014730554631.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014730554631.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Bo", 
        "id": "sg:person.012063433777.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063433777.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Xiaoling", 
        "id": "sg:person.015646716377.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646716377.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinqing", 
        "id": "sg:person.015017175153.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015017175153.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Hongliang", 
        "id": "sg:person.014660345751.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660345751.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Jun", 
        "id": "sg:person.015417552631.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417552631.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep04204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013784578", 
          "https://doi.org/10.1038/srep04204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-28", 
    "datePublishedReg": "2019-05-28", 
    "description": "Single crystalline Ni gradient\u2013diameter magnetic nanowire arrays (GDMNWs) with different D/d (the diameter of thick end (D) and thin end (d) of GDMNWs) were successfully prepared by constant potential electrodeposition into a tapered anodic aluminum oxide template. The TEM images of samples illustrated that the obvious gradient\u2013diameter nanowires had been obtained. The HRTEM, SAED images and XRD pattern demonstrated that the nanowire arrays grew with Ni single crystal structures. The magnetic interaction of GDMNWs was investigated by first-order reversal curves (FORCs) and \u03b4M(H) plots. The FORCs diagrams and \u03b4M(H) plots of different D/d ratio were compared and indicated that the magnetic interaction of GDMNWs with a thin end was dominated by dipolar interaction, and the thick end was dominated by exchange interaction. There was a gradient overlap effect in dipolar interaction and exchange interaction between the thin end and thick end. The spatial distributions of such unique magnetic interaction of GDMNWs were likely to produce entirely new physical characteristics of memory effect and tunable ferromagnetic resonance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-019-03694-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8272189", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8931615", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4803"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "17", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "magnetic nanowire arrays", 
      "nanowire arrays", 
      "first-order reversal curves", 
      "anodic aluminum oxide template", 
      "aluminum oxide template", 
      "oxide template", 
      "constant potential electrodeposition", 
      "thin end", 
      "thick end", 
      "XRD patterns", 
      "reversal curves", 
      "ferromagnetic resonance", 
      "memory effect", 
      "unique magnetic interactions", 
      "new physical characteristics", 
      "potential electrodeposition", 
      "TEM images", 
      "magnetic interactions", 
      "D ratio", 
      "tunable ferromagnetic resonance", 
      "array", 
      "FORC diagrams", 
      "physical characteristics", 
      "nanowires", 
      "spatial distribution", 
      "electrodeposition", 
      "SAED images", 
      "dipolar interactions", 
      "HRTEM", 
      "exchange interaction", 
      "images", 
      "overlap effects", 
      "structure", 
      "characteristics", 
      "diagram", 
      "ratio", 
      "effect", 
      "template", 
      "curves", 
      "single crystal structure", 
      "distribution", 
      "interaction", 
      "crystal structure", 
      "plots", 
      "end", 
      "resonance", 
      "samples", 
      "growth", 
      "patterns"
    ], 
    "name": "Growth and magnetic interaction of single crystalline Ni gradient\u2013diameter magnetic nanowire arrays", 
    "pagination": "11538-11545", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115968337"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-019-03694-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-019-03694-3", 
      "https://app.dimensions.ai/details/publication/pub.1115968337"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_833.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-019-03694-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-019-03694-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-019-03694-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-019-03694-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-019-03694-3'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      74 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-019-03694-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N78b713484db14580a0b57466e8deb8a5
4 schema:citation sg:pub.10.1038/srep04204
5 schema:datePublished 2019-05-28
6 schema:datePublishedReg 2019-05-28
7 schema:description Single crystalline Ni gradient–diameter magnetic nanowire arrays (GDMNWs) with different D/d (the diameter of thick end (D) and thin end (d) of GDMNWs) were successfully prepared by constant potential electrodeposition into a tapered anodic aluminum oxide template. The TEM images of samples illustrated that the obvious gradient–diameter nanowires had been obtained. The HRTEM, SAED images and XRD pattern demonstrated that the nanowire arrays grew with Ni single crystal structures. The magnetic interaction of GDMNWs was investigated by first-order reversal curves (FORCs) and δM(H) plots. The FORCs diagrams and δM(H) plots of different D/d ratio were compared and indicated that the magnetic interaction of GDMNWs with a thin end was dominated by dipolar interaction, and the thick end was dominated by exchange interaction. There was a gradient overlap effect in dipolar interaction and exchange interaction between the thin end and thick end. The spatial distributions of such unique magnetic interaction of GDMNWs were likely to produce entirely new physical characteristics of memory effect and tunable ferromagnetic resonance.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N8854c0ea4d794464b24670a060b967a7
11 Nc636bd9a9f77413185941a616b62aa45
12 sg:journal.1312116
13 schema:keywords D ratio
14 FORC diagrams
15 HRTEM
16 SAED images
17 TEM images
18 XRD patterns
19 aluminum oxide template
20 anodic aluminum oxide template
21 array
22 characteristics
23 constant potential electrodeposition
24 crystal structure
25 curves
26 diagram
27 dipolar interactions
28 distribution
29 effect
30 electrodeposition
31 end
32 exchange interaction
33 ferromagnetic resonance
34 first-order reversal curves
35 growth
36 images
37 interaction
38 magnetic interactions
39 magnetic nanowire arrays
40 memory effect
41 nanowire arrays
42 nanowires
43 new physical characteristics
44 overlap effects
45 oxide template
46 patterns
47 physical characteristics
48 plots
49 potential electrodeposition
50 ratio
51 resonance
52 reversal curves
53 samples
54 single crystal structure
55 spatial distribution
56 structure
57 template
58 thick end
59 thin end
60 tunable ferromagnetic resonance
61 unique magnetic interactions
62 schema:name Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays
63 schema:pagination 11538-11545
64 schema:productId N8d920699c6bd477188cd8fc773a1bdde
65 Nfa2d07ab42cf47d2bcef1235a2c30ed2
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115968337
67 https://doi.org/10.1007/s10853-019-03694-3
68 schema:sdDatePublished 2022-10-01T06:46
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nccfab19fcf044aad9afcc2ef7786aa1f
71 schema:url https://doi.org/10.1007/s10853-019-03694-3
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N20dc043bc5024163bcedc661fe39b483 rdf:first sg:person.015646716377.66
76 rdf:rest N7aa236f5812344e1a15570bba030be31
77 N78b713484db14580a0b57466e8deb8a5 rdf:first sg:person.011763157753.82
78 rdf:rest Ne81ec16c51564d50ae92398c7db81e39
79 N7aa236f5812344e1a15570bba030be31 rdf:first sg:person.015017175153.14
80 rdf:rest Ne01cadabfa0c4083a49599084de93ae6
81 N8854c0ea4d794464b24670a060b967a7 schema:volumeNumber 54
82 rdf:type schema:PublicationVolume
83 N8d920699c6bd477188cd8fc773a1bdde schema:name dimensions_id
84 schema:value pub.1115968337
85 rdf:type schema:PropertyValue
86 Nc636bd9a9f77413185941a616b62aa45 schema:issueNumber 17
87 rdf:type schema:PublicationIssue
88 Nc7699cf9315c469caeba4c019529f013 rdf:first sg:person.015417552631.67
89 rdf:rest rdf:nil
90 Nccfab19fcf044aad9afcc2ef7786aa1f schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Ndec5e869872d4df6b20075122c89da57 rdf:first sg:person.012063433777.75
93 rdf:rest N20dc043bc5024163bcedc661fe39b483
94 Ne01cadabfa0c4083a49599084de93ae6 rdf:first sg:person.014660345751.01
95 rdf:rest Nc7699cf9315c469caeba4c019529f013
96 Ne81ec16c51564d50ae92398c7db81e39 rdf:first sg:person.014730554631.27
97 rdf:rest Ndec5e869872d4df6b20075122c89da57
98 Nfa2d07ab42cf47d2bcef1235a2c30ed2 schema:name doi
99 schema:value 10.1007/s10853-019-03694-3
100 rdf:type schema:PropertyValue
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
105 schema:name Materials Engineering
106 rdf:type schema:DefinedTerm
107 sg:grant.8272189 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-019-03694-3
108 rdf:type schema:MonetaryGrant
109 sg:grant.8931615 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-019-03694-3
110 rdf:type schema:MonetaryGrant
111 sg:journal.1312116 schema:issn 0022-2461
112 1573-4803
113 schema:name Journal of Materials Science
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.011763157753.82 schema:affiliation grid-institutes:grid.411485.d
117 schema:familyName Xu
118 schema:givenName Jingcai
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763157753.82
120 rdf:type schema:Person
121 sg:person.012063433777.75 schema:affiliation grid-institutes:grid.411485.d
122 schema:familyName Hong
123 schema:givenName Bo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063433777.75
125 rdf:type schema:Person
126 sg:person.014660345751.01 schema:affiliation grid-institutes:grid.411485.d
127 schema:familyName Ge
128 schema:givenName Hongliang
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660345751.01
130 rdf:type schema:Person
131 sg:person.014730554631.27 schema:affiliation grid-institutes:grid.469325.f
132 schema:familyName Wang
133 schema:givenName Jing
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014730554631.27
135 rdf:type schema:Person
136 sg:person.015017175153.14 schema:affiliation grid-institutes:grid.411485.d
137 schema:familyName Wang
138 schema:givenName Xinqing
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015017175153.14
140 rdf:type schema:Person
141 sg:person.015417552631.67 schema:affiliation grid-institutes:grid.469325.f
142 schema:familyName Hu
143 schema:givenName Jun
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417552631.67
145 rdf:type schema:Person
146 sg:person.015646716377.66 schema:affiliation grid-institutes:grid.411485.d
147 schema:familyName Peng
148 schema:givenName Xiaoling
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646716377.66
150 rdf:type schema:Person
151 sg:pub.10.1038/srep04204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013784578
152 https://doi.org/10.1038/srep04204
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.411485.d schema:alternateName Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China
155 schema:name College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
156 Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, 310018, Hangzhou, China
157 rdf:type schema:Organization
158 grid-institutes:grid.469325.f schema:alternateName College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
159 schema:name College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...