Energy absorption of a bio-inspired honeycomb sandwich panel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ngoc San Ha, Guoxing Lu, Xinmei Xiang

ABSTRACT

In this study, a novel bio-inspired honeycomb sandwich panel (BHSP) based on the microstructure of a woodpecker’s beak is proposed. Unlike a conventional honeycomb, the walls of the bio-inspired honeycomb (BH), which is used as the core of a sandwich panel, are made wavy. Finite element simulation shows that under dynamic crushing the proposed BHSPs exhibit superior energy absorption capability compared with the conventional honeycomb sandwich panel (CHSP). In particular, the specific energy absorption (SEA) of the BHSP increases by 125% and 63.7%, respectively, compared with that of the honeycomb sandwich panel with the same thickness core or the same volume core. In addition, a parametric study of the BHSPs is carried out to investigate the influences of the wave amplitude, wave number and core thickness on the energy absorption performance of the BHSPs. It is found that the BH core with a larger wave number and amplitude shows higher SEA. Furthermore, an increase in core thickness can improve the SEA. These results provide guidelines in the design of a lightweight sandwich panel for high-energy absorption capability. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-018-3163-x

DOI

http://dx.doi.org/10.1007/s10853-018-3163-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111413032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swinburne University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1027.4", 
          "name": [
            "Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Ngoc San", 
        "id": "sg:person.012603126265.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603126265.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swinburne University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1027.4", 
          "name": [
            "Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Guoxing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411863.9", 
          "name": [
            "School of Civil Engineering, Guangzhou University, Guangzhou Panyu University City Outer Ring Road No. 230, 510006, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Xinmei", 
        "id": "sg:person.010371534771.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371534771.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compositesb.2016.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004085810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004491200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004491200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004491200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004491200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2010.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004719907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0122677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005384385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.12.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008258230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2014.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015692155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2013.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025377005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.0274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027291726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2010.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027310858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma9030162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031565385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2014.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032288885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/2041-4196.1.4.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033073614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/2041-4196.1.4.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033073614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(83)90004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041099406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(83)90004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041099406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2013.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041434782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0026490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045564700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051083974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2012.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052358590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2015.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053190056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)cc.1943-5614.0000729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057625069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2017.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084067575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084067734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijimpeng.2017.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085608382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085963613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-03767-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087309501", 
          "https://doi.org/10.1038/s41598-017-03767-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2017.07.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090992549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091048336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-1420-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146680", 
          "https://doi.org/10.1007/s10853-017-1420-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-1420-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146680", 
          "https://doi.org/10.1007/s10853-017-1420-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091835277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091835356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091836517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091883784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092226784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-1798-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093077044", 
          "https://doi.org/10.1007/s10853-017-1798-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42235-017-0004-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100550885", 
          "https://doi.org/10.1007/s42235-017-0004-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2018.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100766907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2611-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105067839", 
          "https://doi.org/10.1007/s10853-018-2611-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2611-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105067839", 
          "https://doi.org/10.1007/s10853-018-2611-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2018.08.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106383666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2018.08.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106431054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2018.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106490608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-018-2958-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107273268", 
          "https://doi.org/10.1007/s10853-018-2958-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2018.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107571046"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this study, a novel bio-inspired honeycomb sandwich panel (BHSP) based on the microstructure of a woodpecker\u2019s beak is proposed. Unlike a conventional honeycomb, the walls of the bio-inspired honeycomb (BH), which is used as the core of a sandwich panel, are made wavy. Finite element simulation shows that under dynamic crushing the proposed BHSPs exhibit superior energy absorption capability compared with the conventional honeycomb sandwich panel (CHSP). In particular, the specific energy absorption (SEA) of the BHSP increases by 125% and 63.7%, respectively, compared with that of the honeycomb sandwich panel with the same thickness core or the same volume core. In addition, a parametric study of the BHSPs is carried out to investigate the influences of the wave amplitude, wave number and core thickness on the energy absorption performance of the BHSPs. It is found that the BH core with a larger wave number and amplitude shows higher SEA. Furthermore, an increase in core thickness can improve the SEA. These results provide guidelines in the design of a lightweight sandwich panel for high-energy absorption capability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10853-018-3163-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5129126", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Energy absorption of a bio-inspired honeycomb sandwich panel", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef8964d7e15ace6a7091ca110cd25c681ac94701c5688a51be49054e7437bfee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-018-3163-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111413032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-018-3163-x", 
      "https://app.dimensions.ai/details/publication/pub.1111413032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11231_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10853-018-3163-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-3163-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-3163-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-3163-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-3163-x'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      67 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-018-3163-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N84172b81ebbf4976817f161419e233a2
4 schema:citation sg:pub.10.1007/s10853-017-1420-z
5 sg:pub.10.1007/s10853-017-1798-7
6 sg:pub.10.1007/s10853-018-2611-y
7 sg:pub.10.1007/s10853-018-2958-0
8 sg:pub.10.1007/s42235-017-0004-6
9 sg:pub.10.1038/s41598-017-03767-w
10 https://doi.org/10.1016/0734-743x(83)90004-0
11 https://doi.org/10.1016/j.compositesb.2016.09.037
12 https://doi.org/10.1016/j.compositesb.2017.03.030
13 https://doi.org/10.1016/j.compositesb.2018.01.027
14 https://doi.org/10.1016/j.compositesb.2018.08.122
15 https://doi.org/10.1016/j.compositesb.2018.08.130
16 https://doi.org/10.1016/j.compstruct.2010.04.015
17 https://doi.org/10.1016/j.compstruct.2012.02.024
18 https://doi.org/10.1016/j.compstruct.2017.03.018
19 https://doi.org/10.1016/j.compstruct.2017.08.020
20 https://doi.org/10.1016/j.compstruct.2017.09.015
21 https://doi.org/10.1016/j.compstruct.2017.09.023
22 https://doi.org/10.1016/j.compstruct.2017.09.025
23 https://doi.org/10.1016/j.compstruct.2017.10.038
24 https://doi.org/10.1016/j.engstruct.2017.07.081
25 https://doi.org/10.1016/j.ijimpeng.2013.12.009
26 https://doi.org/10.1016/j.ijimpeng.2014.07.019
27 https://doi.org/10.1016/j.ijimpeng.2017.05.016
28 https://doi.org/10.1016/j.ijmecsci.2018.08.041
29 https://doi.org/10.1016/j.ijmecsci.2018.10.025
30 https://doi.org/10.1016/j.ijsolstr.2014.10.019
31 https://doi.org/10.1016/j.matdes.2014.07.037
32 https://doi.org/10.1016/j.matdes.2015.12.158
33 https://doi.org/10.1016/j.matdes.2017.06.014
34 https://doi.org/10.1016/j.matdes.2017.09.040
35 https://doi.org/10.1016/j.msec.2010.01.011
36 https://doi.org/10.1016/j.pmatsci.2015.06.001
37 https://doi.org/10.1016/j.tws.2013.04.003
38 https://doi.org/10.1016/j.tws.2015.01.003
39 https://doi.org/10.1061/(asce)cc.1943-5614.0000729
40 https://doi.org/10.1098/rsif.2014.0274
41 https://doi.org/10.1126/science.1218764
42 https://doi.org/10.1260/2041-4196.1.4.507
43 https://doi.org/10.1371/journal.pone.0026490
44 https://doi.org/10.1371/journal.pone.0122677
45 https://doi.org/10.3390/ma9030162
46 schema:datePublished 2019-04
47 schema:datePublishedReg 2019-04-01
48 schema:description In this study, a novel bio-inspired honeycomb sandwich panel (BHSP) based on the microstructure of a woodpecker’s beak is proposed. Unlike a conventional honeycomb, the walls of the bio-inspired honeycomb (BH), which is used as the core of a sandwich panel, are made wavy. Finite element simulation shows that under dynamic crushing the proposed BHSPs exhibit superior energy absorption capability compared with the conventional honeycomb sandwich panel (CHSP). In particular, the specific energy absorption (SEA) of the BHSP increases by 125% and 63.7%, respectively, compared with that of the honeycomb sandwich panel with the same thickness core or the same volume core. In addition, a parametric study of the BHSPs is carried out to investigate the influences of the wave amplitude, wave number and core thickness on the energy absorption performance of the BHSPs. It is found that the BH core with a larger wave number and amplitude shows higher SEA. Furthermore, an increase in core thickness can improve the SEA. These results provide guidelines in the design of a lightweight sandwich panel for high-energy absorption capability.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1312116
53 schema:name Energy absorption of a bio-inspired honeycomb sandwich panel
54 schema:pagination 1-15
55 schema:productId N1384eda311ce465998762496af899240
56 N662ec0c8f2d5400a9a05dff3e9b3bb68
57 Nc4b5ea497fc64f9cb1cc85b29a13a77b
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111413032
59 https://doi.org/10.1007/s10853-018-3163-x
60 schema:sdDatePublished 2019-04-11T08:40
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N33ce0c0893634377b61b7b29d65e4f15
63 schema:url https://link.springer.com/10.1007%2Fs10853-018-3163-x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1384eda311ce465998762496af899240 schema:name dimensions_id
68 schema:value pub.1111413032
69 rdf:type schema:PropertyValue
70 N1b31023b673441149465da0bd793e329 rdf:first N334d9d7dabe24fcba087934921bf1095
71 rdf:rest N42013dce2de6497bb6b3d0ea672ae323
72 N334d9d7dabe24fcba087934921bf1095 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
73 schema:familyName Lu
74 schema:givenName Guoxing
75 rdf:type schema:Person
76 N33ce0c0893634377b61b7b29d65e4f15 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N42013dce2de6497bb6b3d0ea672ae323 rdf:first sg:person.010371534771.17
79 rdf:rest rdf:nil
80 N662ec0c8f2d5400a9a05dff3e9b3bb68 schema:name doi
81 schema:value 10.1007/s10853-018-3163-x
82 rdf:type schema:PropertyValue
83 N84172b81ebbf4976817f161419e233a2 rdf:first sg:person.012603126265.66
84 rdf:rest N1b31023b673441149465da0bd793e329
85 Nc4b5ea497fc64f9cb1cc85b29a13a77b schema:name readcube_id
86 schema:value ef8964d7e15ace6a7091ca110cd25c681ac94701c5688a51be49054e7437bfee
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:grant.5129126 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-3163-x
95 rdf:type schema:MonetaryGrant
96 sg:journal.1312116 schema:issn 0022-2461
97 1573-4811
98 schema:name Journal of Materials Science
99 rdf:type schema:Periodical
100 sg:person.010371534771.17 schema:affiliation https://www.grid.ac/institutes/grid.411863.9
101 schema:familyName Xiang
102 schema:givenName Xinmei
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371534771.17
104 rdf:type schema:Person
105 sg:person.012603126265.66 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
106 schema:familyName Ha
107 schema:givenName Ngoc San
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603126265.66
109 rdf:type schema:Person
110 sg:pub.10.1007/s10853-017-1420-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146680
111 https://doi.org/10.1007/s10853-017-1420-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10853-017-1798-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093077044
114 https://doi.org/10.1007/s10853-017-1798-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10853-018-2611-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067839
117 https://doi.org/10.1007/s10853-018-2611-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10853-018-2958-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273268
120 https://doi.org/10.1007/s10853-018-2958-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s42235-017-0004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100550885
123 https://doi.org/10.1007/s42235-017-0004-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/s41598-017-03767-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1087309501
126 https://doi.org/10.1038/s41598-017-03767-w
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0734-743x(83)90004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041099406
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.compositesb.2016.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004085810
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.compositesb.2017.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084067575
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.compositesb.2018.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100766907
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.compositesb.2018.08.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106383666
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.compositesb.2018.08.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106431054
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.compstruct.2010.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027310858
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.compstruct.2012.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358590
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.compstruct.2017.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084067734
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.compstruct.2017.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091048336
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.compstruct.2017.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091835277
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.compstruct.2017.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836517
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.compstruct.2017.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091835356
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.compstruct.2017.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092226784
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.engstruct.2017.07.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090992549
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ijimpeng.2013.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041434782
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ijimpeng.2014.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032288885
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijimpeng.2017.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085608382
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ijmecsci.2018.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106490608
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijmecsci.2018.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107571046
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijsolstr.2014.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015692155
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.matdes.2014.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051083974
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.matdes.2015.12.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008258230
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.matdes.2017.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085963613
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.matdes.2017.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091883784
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.msec.2010.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004719907
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.pmatsci.2015.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004491200
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.tws.2013.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025377005
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tws.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053190056
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1061/(asce)cc.1943-5614.0000729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057625069
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1098/rsif.2014.0274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027291726
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1218764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465988
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1260/2041-4196.1.4.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033073614
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1371/journal.pone.0026490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564700
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0122677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005384385
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3390/ma9030162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031565385
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.1027.4 schema:alternateName Swinburne University of Technology
201 schema:name Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.411863.9 schema:alternateName Guangzhou University
204 schema:name School of Civil Engineering, Guangzhou University, Guangzhou Panyu University City Outer Ring Road No. 230, 510006, Guangzhou, China
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...