Air–water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-09

AUTHORS

Chaorui Xue, Shengliang Hu, Qing Chang, Ning Li, Yanzhong Wang, Wei Liu, Jinlong Yang

ABSTRACT

Using method of electrochemical anodization and subsequent reduction, titanium gauze with reduced TiO2 nanotubes on the surface (reduced TiO2 nanotubes/Ti gauze) was prepared and used for air–water interface solar heating. The electrochemical reduction method can generate Ti3+ and causes the narrowing of optical band gap of TiO2 (ca. 2.91 eV). Combining with the nanotubular structure, reduced TiO2 nanotubes/Ti gauze demonstrated higher absorption ability of visible light than other types of titanium gauzes (reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze and P25 TiO2 nanoparticles/Ti gauze). For evaluating the property of air–water interface solar heating, solar water evaporation test was conducted. The results demonstrated that the reduced TiO2 nanotubes/Ti gauze can efficiently accelerate water evaporation. The water evaporation rate and solar thermal conversion efficiency were 1.41 kg m−2 h−1 and 44.2%, respectively, under solar light irradiation with intensity of 2 kW m−2, which are higher than that of reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze, P25 TiO2 nanoparticles/Ti gauze and pristine Ti gauze. It was further found that the solar thermal conversion efficiency of reduced TiO2 nanotubes/Ti gauze attained 84.2% when solar light intensity increased to 5.6 kW m−2. This work may provide a new route to design more advanced photothermal materials for industrial applications such as waste water treatment, salt production and solar desalination. More... »

PAGES

9742-9754

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-018-2293-5

DOI

http://dx.doi.org/10.1007/s10853-018-2293-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103195717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Chaorui", 
        "id": "sg:person.015610464623.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610464623.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Energy and Power Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Energy and Power Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Shengliang", 
        "id": "sg:person.0742462166.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742462166.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Qing", 
        "id": "sg:person.015144622515.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144622515.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ning", 
        "id": "sg:person.016667225555.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667225555.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yanzhong", 
        "id": "sg:person.014750120255.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750120255.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wei", 
        "id": "sg:person.011074364025.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074364025.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People\u2019s Republic of China", 
            "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinlong", 
        "id": "sg:person.011417212511.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417212511.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049186682", 
          "https://doi.org/10.1038/ncomms5449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050616439", 
          "https://doi.org/10.1038/ncomms10103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036017477", 
          "https://doi.org/10.1038/nphoton.2016.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019117328935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001084712", 
          "https://doi.org/10.1023/a:1019117328935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-0930-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027264", 
          "https://doi.org/10.1007/s10853-017-0930-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-09", 
    "datePublishedReg": "2018-04-09", 
    "description": "Using method of electrochemical anodization and subsequent reduction, titanium gauze with reduced TiO2 nanotubes on the surface (reduced TiO2 nanotubes/Ti gauze) was prepared and used for air\u2013water interface solar heating. The electrochemical reduction method can generate Ti3+ and causes the narrowing of optical band gap of TiO2 (ca. 2.91\u00a0eV).\n Combining with the nanotubular structure, reduced TiO2 nanotubes/Ti gauze demonstrated higher absorption ability of visible light than other types of titanium gauzes (reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze and P25 TiO2 nanoparticles/Ti gauze). For evaluating the property of air\u2013water interface solar heating, solar water evaporation test was conducted. The results demonstrated that the reduced TiO2 nanotubes/Ti gauze can efficiently accelerate water evaporation. The water evaporation rate and solar thermal conversion efficiency were 1.41\u00a0kg\u00a0m\u22122\u00a0h\u22121 and 44.2%, respectively, under solar light irradiation with intensity of 2\u00a0kW\u00a0m\u22122, which are higher than that of reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze, P25 TiO2 nanoparticles/Ti gauze and pristine Ti gauze. It was further found that the solar thermal conversion efficiency of reduced TiO2 nanotubes/Ti gauze attained 84.2% when solar light intensity increased to 5.6\u00a0kW\u00a0m\u22122. This work may provide a new route to design more advanced photothermal materials for industrial applications such as waste water treatment, salt production and solar desalination.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-018-2293-5", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8376266", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8268546", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4803"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "solar-thermal conversion efficiency", 
      "thermal conversion efficiency", 
      "solar heating", 
      "reduced TiO2", 
      "electrochemical reduction method", 
      "conversion efficiency", 
      "solar light irradiation", 
      "water evaporation rate", 
      "waste water treatment", 
      "solar light intensity", 
      "optical band gap", 
      "high absorption ability", 
      "light irradiation", 
      "solar desalination", 
      "nanotubular structures", 
      "visible light", 
      "P25 TiO2", 
      "photothermal materials", 
      "electrochemical anodization", 
      "new route", 
      "evaporation tests", 
      "TiO2 nanotubes", 
      "water evaporation", 
      "water treatment", 
      "TiO2", 
      "absorption ability", 
      "evaporation rate", 
      "industrial applications", 
      "band gap", 
      "subsequent reduction", 
      "heating", 
      "reduction method", 
      "desalination", 
      "nanotubes", 
      "salt production", 
      "anodization", 
      "Ti3", 
      "efficiency", 
      "evaporation", 
      "route", 
      "irradiation", 
      "light intensity", 
      "surface", 
      "materials", 
      "properties", 
      "method", 
      "structure", 
      "applications", 
      "intensity", 
      "gauze", 
      "work", 
      "light", 
      "test", 
      "reduction", 
      "results", 
      "gap", 
      "production", 
      "rate", 
      "ability", 
      "types", 
      "narrowing", 
      "treatment"
    ], 
    "name": "Air\u2013water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes", 
    "pagination": "9742-9754", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103195717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-018-2293-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-018-2293-5", 
      "https://app.dimensions.ai/details/publication/pub.1103195717"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-018-2293-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2293-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2293-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2293-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2293-5'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      94 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-018-2293-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0907
5 anzsrc-for:0912
6 schema:author N86336f1e112e4957a910d2238650b38d
7 schema:citation sg:pub.10.1007/s10853-017-0930-z
8 sg:pub.10.1023/a:1019117328935
9 sg:pub.10.1038/ncomms10103
10 sg:pub.10.1038/ncomms5449
11 sg:pub.10.1038/nphoton.2016.75
12 schema:datePublished 2018-04-09
13 schema:datePublishedReg 2018-04-09
14 schema:description Using method of electrochemical anodization and subsequent reduction, titanium gauze with reduced TiO2 nanotubes on the surface (reduced TiO2 nanotubes/Ti gauze) was prepared and used for air–water interface solar heating. The electrochemical reduction method can generate Ti3+ and causes the narrowing of optical band gap of TiO2 (ca. 2.91 eV). Combining with the nanotubular structure, reduced TiO2 nanotubes/Ti gauze demonstrated higher absorption ability of visible light than other types of titanium gauzes (reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze and P25 TiO2 nanoparticles/Ti gauze). For evaluating the property of air–water interface solar heating, solar water evaporation test was conducted. The results demonstrated that the reduced TiO2 nanotubes/Ti gauze can efficiently accelerate water evaporation. The water evaporation rate and solar thermal conversion efficiency were 1.41 kg m−2 h−1 and 44.2%, respectively, under solar light irradiation with intensity of 2 kW m−2, which are higher than that of reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze, P25 TiO2 nanoparticles/Ti gauze and pristine Ti gauze. It was further found that the solar thermal conversion efficiency of reduced TiO2 nanotubes/Ti gauze attained 84.2% when solar light intensity increased to 5.6 kW m−2. This work may provide a new route to design more advanced photothermal materials for industrial applications such as waste water treatment, salt production and solar desalination.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N2c4d119b38454178829b8ce677a883bd
18 Nd1bce5353b824b7da2a7177d5ed2c089
19 sg:journal.1312116
20 schema:keywords P25 TiO2
21 Ti3
22 TiO2
23 TiO2 nanotubes
24 ability
25 absorption ability
26 anodization
27 applications
28 band gap
29 conversion efficiency
30 desalination
31 efficiency
32 electrochemical anodization
33 electrochemical reduction method
34 evaporation
35 evaporation rate
36 evaporation tests
37 gap
38 gauze
39 heating
40 high absorption ability
41 industrial applications
42 intensity
43 irradiation
44 light
45 light intensity
46 light irradiation
47 materials
48 method
49 nanotubes
50 nanotubular structures
51 narrowing
52 new route
53 optical band gap
54 photothermal materials
55 production
56 properties
57 rate
58 reduced TiO2
59 reduction
60 reduction method
61 results
62 route
63 salt production
64 solar desalination
65 solar heating
66 solar light intensity
67 solar light irradiation
68 solar-thermal conversion efficiency
69 structure
70 subsequent reduction
71 surface
72 test
73 thermal conversion efficiency
74 treatment
75 types
76 visible light
77 waste water treatment
78 water evaporation
79 water evaporation rate
80 water treatment
81 work
82 schema:name Air–water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes
83 schema:pagination 9742-9754
84 schema:productId N4c2b1a517ac54fac83706db182844363
85 N65feed51df3a434080a755f85583083f
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103195717
87 https://doi.org/10.1007/s10853-018-2293-5
88 schema:sdDatePublished 2022-12-01T06:37
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N5ec2dea4ce1240f681a9bad7e10742c8
91 schema:url https://doi.org/10.1007/s10853-018-2293-5
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N279441574f3d48c4a2d5ee9ab74fddd2 rdf:first sg:person.015144622515.26
96 rdf:rest N93a7ddd065104a99908711e1ae745881
97 N2c4d119b38454178829b8ce677a883bd schema:issueNumber 13
98 rdf:type schema:PublicationIssue
99 N4c2b1a517ac54fac83706db182844363 schema:name doi
100 schema:value 10.1007/s10853-018-2293-5
101 rdf:type schema:PropertyValue
102 N5ec2dea4ce1240f681a9bad7e10742c8 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N65feed51df3a434080a755f85583083f schema:name dimensions_id
105 schema:value pub.1103195717
106 rdf:type schema:PropertyValue
107 N811bd8a1e34c47d9bebbbb1f73e66132 rdf:first sg:person.0742462166.34
108 rdf:rest N279441574f3d48c4a2d5ee9ab74fddd2
109 N86336f1e112e4957a910d2238650b38d rdf:first sg:person.015610464623.19
110 rdf:rest N811bd8a1e34c47d9bebbbb1f73e66132
111 N93a7ddd065104a99908711e1ae745881 rdf:first sg:person.016667225555.51
112 rdf:rest Nf9e12d8638284f488c7913a4f204a73c
113 N9c536084ec874250929b2727b3469503 rdf:first sg:person.011074364025.55
114 rdf:rest Nae29cdfb570243479ea0dfdcfa470054
115 Nae29cdfb570243479ea0dfdcfa470054 rdf:first sg:person.011417212511.01
116 rdf:rest rdf:nil
117 Nd1bce5353b824b7da2a7177d5ed2c089 schema:volumeNumber 53
118 rdf:type schema:PublicationVolume
119 Nf9e12d8638284f488c7913a4f204a73c rdf:first sg:person.014750120255.26
120 rdf:rest N9c536084ec874250929b2727b3469503
121 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
122 schema:name Chemical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Chemistry (incl. Structural)
126 rdf:type schema:DefinedTerm
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
131 schema:name Environmental Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:grant.8268546 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-2293-5
137 rdf:type schema:MonetaryGrant
138 sg:grant.8376266 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-2293-5
139 rdf:type schema:MonetaryGrant
140 sg:journal.1312116 schema:issn 0022-2461
141 1573-4803
142 schema:name Journal of Materials Science
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.011074364025.55 schema:affiliation grid-institutes:grid.440581.c
146 schema:familyName Liu
147 schema:givenName Wei
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074364025.55
149 rdf:type schema:Person
150 sg:person.011417212511.01 schema:affiliation grid-institutes:grid.12527.33
151 schema:familyName Yang
152 schema:givenName Jinlong
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417212511.01
154 rdf:type schema:Person
155 sg:person.014750120255.26 schema:affiliation grid-institutes:grid.440581.c
156 schema:familyName Wang
157 schema:givenName Yanzhong
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750120255.26
159 rdf:type schema:Person
160 sg:person.015144622515.26 schema:affiliation grid-institutes:grid.440581.c
161 schema:familyName Chang
162 schema:givenName Qing
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144622515.26
164 rdf:type schema:Person
165 sg:person.015610464623.19 schema:affiliation grid-institutes:grid.440581.c
166 schema:familyName Xue
167 schema:givenName Chaorui
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610464623.19
169 rdf:type schema:Person
170 sg:person.016667225555.51 schema:affiliation grid-institutes:grid.440581.c
171 schema:familyName Li
172 schema:givenName Ning
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667225555.51
174 rdf:type schema:Person
175 sg:person.0742462166.34 schema:affiliation grid-institutes:grid.440581.c
176 schema:familyName Hu
177 schema:givenName Shengliang
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742462166.34
179 rdf:type schema:Person
180 sg:pub.10.1007/s10853-017-0930-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027264
181 https://doi.org/10.1007/s10853-017-0930-z
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/a:1019117328935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001084712
184 https://doi.org/10.1023/a:1019117328935
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ncomms10103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050616439
187 https://doi.org/10.1038/ncomms10103
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ncomms5449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049186682
190 https://doi.org/10.1038/ncomms5449
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nphoton.2016.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036017477
193 https://doi.org/10.1038/nphoton.2016.75
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.12527.33 schema:alternateName School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, People’s Republic of China
196 schema:name School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People’s Republic of China
197 School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, People’s Republic of China
198 rdf:type schema:Organization
199 grid-institutes:grid.440581.c schema:alternateName School of Energy and Power Engineering, North University of China, 030051, Taiyuan, People’s Republic of China
200 School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People’s Republic of China
201 schema:name School of Energy and Power Engineering, North University of China, 030051, Taiyuan, People’s Republic of China
202 School of Materials Science and Engineering, North University of China, 030051, Taiyuan, People’s Republic of China
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...