Surface half-metallicity in the Heusler alloy Cr2CoGa with low magnetic moment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02-26

AUTHORS

Anmin Zheng, Hai Huang, Guoying Gao, Kailun Yao

ABSTRACT

Half-metallic fully compensated ferrimagnets (HM-FCFs) are important spintronic materials due to the high spin polarization and the low magnetic moment. Recently, motivated by the theoretical prediction of HM-FCF of bulk Cr2CoGa, ordered inverse Heusler structural Cr2CoGa thin films were grown by molecular beam epitaxy, and the predicted low magnetic moment and high Curie temperature were also confirmed. Here, in order to compare the electronic and magnetic properties between bulk and thin films for Cr2CoGa, we explore the structural stability, electronic and magnetic properties of Cr2CoGa (001) surface by using first-principles calculations. It is found that the nearly half-metallicity of bulk Cr2CoGa is preserved at the Cr2Ga-terminated (001) surface, and the spin polarization is a little increased compared to the bulk value. However, the Cr1Co-terminated (001) surface destroys the bulk nearly half-metallicity due to the majority-spin surface states at the Fermi level. Cr atomic magnetic moments at both (001) surfaces are greatly increased compared to those in bulk for Cr2CoGa. In addition, we reveal that the Cr2Ga-terminated (001) surface is more stable than the Cr1Co-terminated (001) surface over the whole effective chemical potential. These studies indicate that ordered inverse Heusler structural Cr2CoGa thin films are promising candidates for spintronic applications. More... »

PAGES

8364-8371

References to SciGraph publications

  • 2013-03-29. Heusler-alloy films for spintronic devices in APPLIED PHYSICS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10853-018-2154-2

    DOI

    http://dx.doi.org/10.1007/s10853-018-2154-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101223700


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Anmin", 
            "id": "sg:person.016043240765.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043240765.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Hai", 
            "id": "sg:person.012347442437.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347442437.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Guoying", 
            "id": "sg:person.013345107235.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China", 
              "id": "http://www.grid.ac/institutes/grid.33199.31", 
              "name": [
                "School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Kailun", 
            "id": "sg:person.012133406471.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00339-013-7679-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029705290", 
              "https://doi.org/10.1007/s00339-013-7679-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-02-26", 
        "datePublishedReg": "2018-02-26", 
        "description": "Half-metallic fully compensated ferrimagnets (HM-FCFs) are important spintronic materials due to the high spin polarization and the low magnetic moment. Recently, motivated by the theoretical prediction of HM-FCF of bulk Cr2CoGa, ordered inverse Heusler structural Cr2CoGa thin films were grown by molecular beam epitaxy, and the predicted low magnetic moment and high Curie temperature were also confirmed. Here, in order to compare the electronic and magnetic properties between bulk and thin films for Cr2CoGa, we explore the structural stability, electronic and magnetic properties of Cr2CoGa (001) surface by using first-principles calculations. It is found that the nearly half-metallicity of bulk Cr2CoGa is preserved at the Cr2Ga-terminated (001) surface, and the spin polarization is a little increased compared to the bulk value. However, the Cr1Co-terminated (001) surface destroys the bulk nearly half-metallicity due to the majority-spin surface states at the Fermi level. Cr atomic magnetic moments at both (001) surfaces are greatly increased compared to those in bulk for Cr2CoGa. In addition, we reveal that the Cr2Ga-terminated (001) surface is more stable than the Cr1Co-terminated (001) surface over the whole effective chemical potential. These studies indicate that ordered inverse Heusler structural Cr2CoGa thin films are promising candidates for spintronic applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10853-018-2154-2", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7208971", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7207485", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8120850", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4803"
            ], 
            "name": "Journal of Materials Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "low magnetic moment", 
          "magnetic moment", 
          "magnetic properties", 
          "spin polarization", 
          "atomic magnetic moments", 
          "high spin polarization", 
          "thin films", 
          "high Curie temperature", 
          "spintronic materials", 
          "spintronic applications", 
          "Cr2CoGa", 
          "first-principles calculations", 
          "Curie temperature", 
          "majority-spin surface states", 
          "molecular beam epitaxy", 
          "theoretical predictions", 
          "chemical potential", 
          "Fermi level", 
          "effective chemical potential", 
          "moment", 
          "beam epitaxy", 
          "bulk value", 
          "ferrimagnet", 
          "metallicity", 
          "films", 
          "surface states", 
          "polarization", 
          "properties", 
          "calculations", 
          "bulk", 
          "epitaxy", 
          "prediction", 
          "surface", 
          "applications", 
          "structural stability", 
          "stability", 
          "order", 
          "state", 
          "temperature", 
          "values", 
          "materials", 
          "potential", 
          "candidates", 
          "addition", 
          "study", 
          "levels"
        ], 
        "name": "Surface half-metallicity in the Heusler alloy Cr2CoGa with low magnetic moment", 
        "pagination": "8364-8371", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101223700"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10853-018-2154-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10853-018-2154-2", 
          "https://app.dimensions.ai/details/publication/pub.1101223700"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_792.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10853-018-2154-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2154-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2154-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2154-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2154-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      21 PREDICATES      73 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10853-018-2154-2 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author N48b5f66ec1ee497b9740f2ce7c0eb877
    6 schema:citation sg:pub.10.1007/s00339-013-7679-2
    7 schema:datePublished 2018-02-26
    8 schema:datePublishedReg 2018-02-26
    9 schema:description Half-metallic fully compensated ferrimagnets (HM-FCFs) are important spintronic materials due to the high spin polarization and the low magnetic moment. Recently, motivated by the theoretical prediction of HM-FCF of bulk Cr2CoGa, ordered inverse Heusler structural Cr2CoGa thin films were grown by molecular beam epitaxy, and the predicted low magnetic moment and high Curie temperature were also confirmed. Here, in order to compare the electronic and magnetic properties between bulk and thin films for Cr2CoGa, we explore the structural stability, electronic and magnetic properties of Cr2CoGa (001) surface by using first-principles calculations. It is found that the nearly half-metallicity of bulk Cr2CoGa is preserved at the Cr2Ga-terminated (001) surface, and the spin polarization is a little increased compared to the bulk value. However, the Cr1Co-terminated (001) surface destroys the bulk nearly half-metallicity due to the majority-spin surface states at the Fermi level. Cr atomic magnetic moments at both (001) surfaces are greatly increased compared to those in bulk for Cr2CoGa. In addition, we reveal that the Cr2Ga-terminated (001) surface is more stable than the Cr1Co-terminated (001) surface over the whole effective chemical potential. These studies indicate that ordered inverse Heusler structural Cr2CoGa thin films are promising candidates for spintronic applications.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N09d80a0bc500487296f7268255de7b72
    13 N7f3b0530f67c4bc49f202ad904f16bf3
    14 sg:journal.1312116
    15 schema:keywords Cr2CoGa
    16 Curie temperature
    17 Fermi level
    18 addition
    19 applications
    20 atomic magnetic moments
    21 beam epitaxy
    22 bulk
    23 bulk value
    24 calculations
    25 candidates
    26 chemical potential
    27 effective chemical potential
    28 epitaxy
    29 ferrimagnet
    30 films
    31 first-principles calculations
    32 high Curie temperature
    33 high spin polarization
    34 levels
    35 low magnetic moment
    36 magnetic moment
    37 magnetic properties
    38 majority-spin surface states
    39 materials
    40 metallicity
    41 molecular beam epitaxy
    42 moment
    43 order
    44 polarization
    45 potential
    46 prediction
    47 properties
    48 spin polarization
    49 spintronic applications
    50 spintronic materials
    51 stability
    52 state
    53 structural stability
    54 study
    55 surface
    56 surface states
    57 temperature
    58 theoretical predictions
    59 thin films
    60 values
    61 schema:name Surface half-metallicity in the Heusler alloy Cr2CoGa with low magnetic moment
    62 schema:pagination 8364-8371
    63 schema:productId N5a2d7a44d275443eb997010a6d9e8589
    64 Ne1852502a5164fcab6fbfda9f40736cd
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101223700
    66 https://doi.org/10.1007/s10853-018-2154-2
    67 schema:sdDatePublished 2022-10-01T06:45
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N0a3a6ac971f648749330889ee0f481b2
    70 schema:url https://doi.org/10.1007/s10853-018-2154-2
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N09d80a0bc500487296f7268255de7b72 schema:volumeNumber 53
    75 rdf:type schema:PublicationVolume
    76 N0a3a6ac971f648749330889ee0f481b2 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N48b5f66ec1ee497b9740f2ce7c0eb877 rdf:first sg:person.016043240765.62
    79 rdf:rest Nf1ae1f0aad0e45aeb82cb5be53a65a61
    80 N5a2d7a44d275443eb997010a6d9e8589 schema:name doi
    81 schema:value 10.1007/s10853-018-2154-2
    82 rdf:type schema:PropertyValue
    83 N7f3b0530f67c4bc49f202ad904f16bf3 schema:issueNumber 11
    84 rdf:type schema:PublicationIssue
    85 N80971fef7f3e435498b05a827addfc93 rdf:first sg:person.013345107235.61
    86 rdf:rest Nfefe9fdf5a034dbab2866e8b679d7199
    87 Ne1852502a5164fcab6fbfda9f40736cd schema:name dimensions_id
    88 schema:value pub.1101223700
    89 rdf:type schema:PropertyValue
    90 Nf1ae1f0aad0e45aeb82cb5be53a65a61 rdf:first sg:person.012347442437.66
    91 rdf:rest N80971fef7f3e435498b05a827addfc93
    92 Nfefe9fdf5a034dbab2866e8b679d7199 rdf:first sg:person.012133406471.13
    93 rdf:rest rdf:nil
    94 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Chemical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Physical Chemistry (incl. Structural)
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Engineering
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Materials Engineering
    105 rdf:type schema:DefinedTerm
    106 sg:grant.7207485 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-2154-2
    107 rdf:type schema:MonetaryGrant
    108 sg:grant.7208971 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-2154-2
    109 rdf:type schema:MonetaryGrant
    110 sg:grant.8120850 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-2154-2
    111 rdf:type schema:MonetaryGrant
    112 sg:journal.1312116 schema:issn 0022-2461
    113 1573-4803
    114 schema:name Journal of Materials Science
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.012133406471.13 schema:affiliation grid-institutes:grid.33199.31
    118 schema:familyName Yao
    119 schema:givenName Kailun
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012133406471.13
    121 rdf:type schema:Person
    122 sg:person.012347442437.66 schema:affiliation grid-institutes:grid.33199.31
    123 schema:familyName Huang
    124 schema:givenName Hai
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347442437.66
    126 rdf:type schema:Person
    127 sg:person.013345107235.61 schema:affiliation grid-institutes:grid.33199.31
    128 schema:familyName Gao
    129 schema:givenName Guoying
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345107235.61
    131 rdf:type schema:Person
    132 sg:person.016043240765.62 schema:affiliation grid-institutes:grid.33199.31
    133 schema:familyName Zheng
    134 schema:givenName Anmin
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043240765.62
    136 rdf:type schema:Person
    137 sg:pub.10.1007/s00339-013-7679-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029705290
    138 https://doi.org/10.1007/s00339-013-7679-2
    139 rdf:type schema:CreativeWork
    140 grid-institutes:grid.33199.31 schema:alternateName School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
    141 schema:name School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...