Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

G. Altinkurt, M. Fèvre, G. Geandier, M. Dehmas, O. Robach, J.-S. Micha

ABSTRACT

The Laue microdiffraction technique was used to investigate the strain field caused by the shot-peening operation and its redistribution after thermal hold or fatigue in a model nickel-based superalloy with an average grain size of 40μm. Micrometer and millimeter size mappings showed that the plastic deformation introduced by shot-peening in the whole sample partially relaxes after a thermal exposure at 450∘C and was fully redistributed by the fatigue of the material, except in the hardened layer close to the sample edge. Diffraction patterns permitted to measure separately the strains related to the average alloy (γ+γ′) and to the γ′ phase. No difference was observed between the two deviatoric strain fields. Even if there were small stresses in the inner part of the samples, the sensitivity of the Laue microdiffraction method was large enough to quantitatively characterize the crystal misorientations and the deviatoric strain redistributions. Useful data were provided not only at the grain scale but also at the mesoscopic scale, thus bridging the gap between the sin2ψ and Ortner’s methods used to determine residual stresses, respectively, in fine and single-grain microstructures. The obtained results are also of first interest for a quantitative comparison with HR-EBSD measurements in the scanning electron microscope. Energy coupled measurements with an energy-dispersive point detector were also performed to determine the full elastic strain tensors associated with the γ and γ′ phases. We demonstrated that, for Ni-based superalloys, the accuracy on strains and stresses was, respectively, of the order of 1×10-3 and 250 MPa for the diagonal components of tensors. The measurements suffered from the 150 eV resolution of the detector which made it difficult to the separate the energies of the γ and γ′ phases. Owing to large crystal misorientations, the microdiffraction technique was not able to determine elastic strains and hardening in the highly deformed layer, where a large amount of plastic strain and a number of defects were accumulated. Some improvements are proposed to overcome these difficulties. More... »

PAGES

8567-8589

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-018-2144-4

DOI

http://dx.doi.org/10.1007/s10853-018-2144-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101145080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Jean Lamour", 
          "id": "https://www.grid.ac/institutes/grid.461892.0", 
          "name": [
            "Laboratoire d\u2019\u00c9tude des Microstructures, UMR 104 CNRS-ONERA, 92322, Ch\u00e2tillon, France", 
            "IJL, UMR 7189 CNRS-Universit\u00e9 de Lorraine, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Altinkurt", 
        "givenName": "G.", 
        "id": "sg:person.013564566104.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564566104.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Etude des Microstructures", 
          "id": "https://www.grid.ac/institutes/grid.462924.f", 
          "name": [
            "Laboratoire d\u2019\u00c9tude des Microstructures, UMR 104 CNRS-ONERA, 92322, Ch\u00e2tillon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "F\u00e8vre", 
        "givenName": "M.", 
        "id": "sg:person.014562747121.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562747121.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Jean Lamour", 
          "id": "https://www.grid.ac/institutes/grid.461892.0", 
          "name": [
            "IJL, UMR 7189 CNRS-Universit\u00e9 de Lorraine, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geandier", 
        "givenName": "G.", 
        "id": "sg:person.015427150530.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427150530.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inter university Material Research and Engineering Centre", 
          "id": "https://www.grid.ac/institutes/grid.464172.2", 
          "name": [
            "CIRIMAT, UMR 5085 CNRS-UPS-INPT-ENSIACET, 31000, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dehmas", 
        "givenName": "M.", 
        "id": "sg:person.016447247257.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447247257.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Universit\u00e9 Grenoble Alpes, 38000, Grenoble, France", 
            "CEA-INAC-MEM, 17 rue des Martyrs, 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robach", 
        "givenName": "O.", 
        "id": "sg:person.011731740521.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011731740521.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Grenoble Alpes, 38000, Grenoble, France", 
            "CEA-INAC-MEM, 17 rue des Martyrs, 38000, Grenoble, France", 
            "CNRS, 17 rue des Martyrs, 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micha", 
        "givenName": "J.-S.", 
        "id": "sg:person.01060221256.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060221256.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/9781118516430.ch19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003334556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174328406x130902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(98)00437-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004859626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1994.10.11.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-014-2197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007218755", 
          "https://doi.org/10.1007/s11661-014-2197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007625911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2009.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008132235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19290090104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010507429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00314-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010742605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2013.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011996862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2016.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012442070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00946-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012989943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00946-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012989943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2010.03.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013142770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015354300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889809039867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017039297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2015.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017895258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576715017689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018065113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.2007.01102.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021460351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2005.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024978152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s002188981102320x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034000445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039741845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-014-1184-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802812", 
          "https://doi.org/10.1007/s11837-014-1184-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767313000172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042246759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2014.0128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043859926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2009.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045221656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415887a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045480039", 
          "https://doi.org/10.1038/415887a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415887a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045480039", 
          "https://doi.org/10.1038/415887a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1997.13.4.360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micron.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051446671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3555068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057973410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.371507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058005910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2904232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062093006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/030932405x30984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/030932405x30984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/030932405x30984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064446047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.702-703.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072137310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084066566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/mattech/199179050019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085259611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2017.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090662361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576717014558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092818382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098836419", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7449/1992/superalloys_1992_467_476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099557817"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "The Laue microdiffraction technique was used to investigate the strain field caused by the shot-peening operation and its redistribution after thermal hold or fatigue in a model nickel-based superalloy with an average grain size of 40\u03bcm. Micrometer and millimeter size mappings showed that the plastic deformation introduced by shot-peening in the whole sample partially relaxes after a thermal exposure at 450\u2218C and was fully redistributed by the fatigue of the material, except in the hardened layer close to the sample edge. Diffraction patterns permitted to measure separately the strains related to the average alloy (\u03b3+\u03b3\u2032) and to the \u03b3\u2032 phase. No difference was observed between the two deviatoric strain fields. Even if there were small stresses in the inner part of the samples, the sensitivity of the Laue microdiffraction method was large enough to quantitatively characterize the crystal misorientations and the deviatoric strain redistributions. Useful data were provided not only at the grain scale but also at the mesoscopic scale, thus bridging the gap between the sin2\u03c8 and Ortner\u2019s methods used to determine residual stresses, respectively, in fine and single-grain microstructures. The obtained results are also of first interest for a quantitative comparison with HR-EBSD measurements in the scanning electron microscope. Energy coupled measurements with an energy-dispersive point detector were also performed to determine the full elastic strain tensors associated with the \u03b3 and \u03b3\u2032 phases. We demonstrated that, for Ni-based superalloys, the accuracy on strains and stresses was, respectively, of the order of 1\u00d710-3 and 250 MPa for the diagonal components of tensors. The measurements suffered from the 150 eV resolution of the detector which made it difficult to the separate the energies of the \u03b3 and \u03b3\u2032 phases. Owing to large crystal misorientations, the microdiffraction technique was not able to determine elastic strains and hardening in the highly deformed layer, where a large amount of plastic strain and a number of defects were accumulated. Some improvements are proposed to overcome these difficulties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10853-018-2144-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue microdiffraction", 
    "pagination": "8567-8589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a4f99f5ecd3b35737ae9ae8825824746e4930ee8f47307bb3c4527de058970c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-018-2144-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101145080"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-018-2144-4", 
      "https://app.dimensions.ai/details/publication/pub.1101145080"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99833_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10853-018-2144-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2144-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2144-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2144-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-2144-4'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-018-2144-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4c71f31b00204244962f045200418193
4 schema:citation sg:pub.10.1007/s11661-014-2197-1
5 sg:pub.10.1007/s11837-014-1184-8
6 sg:pub.10.1038/415887a
7 https://app.dimensions.ai/details/publication/pub.1098836419
8 https://doi.org/10.1002/9781118516430.ch19
9 https://doi.org/10.1002/zamm.19290090104
10 https://doi.org/10.1016/j.actamat.2011.04.025
11 https://doi.org/10.1016/j.actamat.2013.01.031
12 https://doi.org/10.1016/j.cma.2017.03.005
13 https://doi.org/10.1016/j.ijfatigue.2005.07.027
14 https://doi.org/10.1016/j.ijfatigue.2016.01.020
15 https://doi.org/10.1016/j.ijmecsci.2015.06.020
16 https://doi.org/10.1016/j.ijplas.2017.07.004
17 https://doi.org/10.1016/j.matlet.2009.06.020
18 https://doi.org/10.1016/j.micron.2004.02.004
19 https://doi.org/10.1016/j.msea.2009.05.033
20 https://doi.org/10.1016/j.nima.2011.09.009
21 https://doi.org/10.1016/j.proeng.2010.03.203
22 https://doi.org/10.1016/j.scriptamat.2008.03.021
23 https://doi.org/10.1016/s0040-6090(03)00946-5
24 https://doi.org/10.1016/s1359-6454(99)00314-6
25 https://doi.org/10.1016/s1359-6462(98)00437-0
26 https://doi.org/10.1051/mattech/199179050019
27 https://doi.org/10.1063/1.1150568
28 https://doi.org/10.1063/1.3555068
29 https://doi.org/10.1063/1.371507
30 https://doi.org/10.1098/rsta.2014.0128
31 https://doi.org/10.1107/s0021889809039867
32 https://doi.org/10.1107/s002188981102320x
33 https://doi.org/10.1107/s0108767313000172
34 https://doi.org/10.1107/s1600576715017689
35 https://doi.org/10.1107/s1600576717014558
36 https://doi.org/10.1111/j.1460-2695.2007.01102.x
37 https://doi.org/10.1115/1.2904232
38 https://doi.org/10.1179/174328406x130902
39 https://doi.org/10.1179/mst.1994.10.11.947
40 https://doi.org/10.1179/mst.1997.13.4.360
41 https://doi.org/10.1243/030932405x30984
42 https://doi.org/10.4028/www.scientific.net/msf.702-703.548
43 https://doi.org/10.7449/1992/superalloys_1992_467_476
44 schema:datePublished 2018-06
45 schema:datePublishedReg 2018-06-01
46 schema:description The Laue microdiffraction technique was used to investigate the strain field caused by the shot-peening operation and its redistribution after thermal hold or fatigue in a model nickel-based superalloy with an average grain size of 40μm. Micrometer and millimeter size mappings showed that the plastic deformation introduced by shot-peening in the whole sample partially relaxes after a thermal exposure at 450∘C and was fully redistributed by the fatigue of the material, except in the hardened layer close to the sample edge. Diffraction patterns permitted to measure separately the strains related to the average alloy (γ+γ′) and to the γ′ phase. No difference was observed between the two deviatoric strain fields. Even if there were small stresses in the inner part of the samples, the sensitivity of the Laue microdiffraction method was large enough to quantitatively characterize the crystal misorientations and the deviatoric strain redistributions. Useful data were provided not only at the grain scale but also at the mesoscopic scale, thus bridging the gap between the sin2ψ and Ortner’s methods used to determine residual stresses, respectively, in fine and single-grain microstructures. The obtained results are also of first interest for a quantitative comparison with HR-EBSD measurements in the scanning electron microscope. Energy coupled measurements with an energy-dispersive point detector were also performed to determine the full elastic strain tensors associated with the γ and γ′ phases. We demonstrated that, for Ni-based superalloys, the accuracy on strains and stresses was, respectively, of the order of 1×10-3 and 250 MPa for the diagonal components of tensors. The measurements suffered from the 150 eV resolution of the detector which made it difficult to the separate the energies of the γ and γ′ phases. Owing to large crystal misorientations, the microdiffraction technique was not able to determine elastic strains and hardening in the highly deformed layer, where a large amount of plastic strain and a number of defects were accumulated. Some improvements are proposed to overcome these difficulties.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N332b2885b091440b9edb7cad2a1a009b
51 N42dc25a3daf14cb5b54346231289d334
52 sg:journal.1312116
53 schema:name Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue microdiffraction
54 schema:pagination 8567-8589
55 schema:productId N358f51247a1c43dcb6272fb9aacc7476
56 N6b92d037db2a47458b77fea90925225f
57 Na37b2109595b40c188cf11ed7c8d376f
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101145080
59 https://doi.org/10.1007/s10853-018-2144-4
60 schema:sdDatePublished 2019-04-11T09:39
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nbff9573a1fef43a696381b1399d5a441
63 schema:url https://link.springer.com/10.1007%2Fs10853-018-2144-4
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N06aa0a9396e84c65ab3024431de24124 rdf:first sg:person.014562747121.16
68 rdf:rest N26f76d38a50a47dc9d10b2a1247008e6
69 N232fa3c613944e409d97d7dd1bfb5e3e rdf:first sg:person.011731740521.58
70 rdf:rest N2d2c0fcc7c4b4e8fb1e3817fd89c1cc4
71 N26f76d38a50a47dc9d10b2a1247008e6 rdf:first sg:person.015427150530.74
72 rdf:rest N3d2ace371dca48cb89efd2ed0cfad592
73 N2d2c0fcc7c4b4e8fb1e3817fd89c1cc4 rdf:first sg:person.01060221256.64
74 rdf:rest rdf:nil
75 N332b2885b091440b9edb7cad2a1a009b schema:issueNumber 11
76 rdf:type schema:PublicationIssue
77 N358f51247a1c43dcb6272fb9aacc7476 schema:name doi
78 schema:value 10.1007/s10853-018-2144-4
79 rdf:type schema:PropertyValue
80 N3d2ace371dca48cb89efd2ed0cfad592 rdf:first sg:person.016447247257.14
81 rdf:rest N232fa3c613944e409d97d7dd1bfb5e3e
82 N42dc25a3daf14cb5b54346231289d334 schema:volumeNumber 53
83 rdf:type schema:PublicationVolume
84 N4c71f31b00204244962f045200418193 rdf:first sg:person.013564566104.58
85 rdf:rest N06aa0a9396e84c65ab3024431de24124
86 N6b92d037db2a47458b77fea90925225f schema:name readcube_id
87 schema:value a4f99f5ecd3b35737ae9ae8825824746e4930ee8f47307bb3c4527de058970c5
88 rdf:type schema:PropertyValue
89 Na37b2109595b40c188cf11ed7c8d376f schema:name dimensions_id
90 schema:value pub.1101145080
91 rdf:type schema:PropertyValue
92 Nbff9573a1fef43a696381b1399d5a441 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
98 schema:name Materials Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1312116 schema:issn 0022-2461
101 1573-4811
102 schema:name Journal of Materials Science
103 rdf:type schema:Periodical
104 sg:person.01060221256.64 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
105 schema:familyName Micha
106 schema:givenName J.-S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060221256.64
108 rdf:type schema:Person
109 sg:person.011731740521.58 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
110 schema:familyName Robach
111 schema:givenName O.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011731740521.58
113 rdf:type schema:Person
114 sg:person.013564566104.58 schema:affiliation https://www.grid.ac/institutes/grid.461892.0
115 schema:familyName Altinkurt
116 schema:givenName G.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564566104.58
118 rdf:type schema:Person
119 sg:person.014562747121.16 schema:affiliation https://www.grid.ac/institutes/grid.462924.f
120 schema:familyName Fèvre
121 schema:givenName M.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562747121.16
123 rdf:type schema:Person
124 sg:person.015427150530.74 schema:affiliation https://www.grid.ac/institutes/grid.461892.0
125 schema:familyName Geandier
126 schema:givenName G.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427150530.74
128 rdf:type schema:Person
129 sg:person.016447247257.14 schema:affiliation https://www.grid.ac/institutes/grid.464172.2
130 schema:familyName Dehmas
131 schema:givenName M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447247257.14
133 rdf:type schema:Person
134 sg:pub.10.1007/s11661-014-2197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007218755
135 https://doi.org/10.1007/s11661-014-2197-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11837-014-1184-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802812
138 https://doi.org/10.1007/s11837-014-1184-8
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/415887a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045480039
141 https://doi.org/10.1038/415887a
142 rdf:type schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1098836419 schema:CreativeWork
144 https://doi.org/10.1002/9781118516430.ch19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003334556
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/zamm.19290090104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010507429
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.actamat.2011.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039741845
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.actamat.2013.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011996862
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cma.2017.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084066566
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijfatigue.2005.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024978152
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ijfatigue.2016.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442070
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ijmecsci.2015.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017895258
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.ijplas.2017.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090662361
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.matlet.2009.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008132235
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.micron.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051446671
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.msea.2009.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045221656
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.nima.2011.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007625911
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.proeng.2010.03.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013142770
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.scriptamat.2008.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015354300
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0040-6090(03)00946-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012989943
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s1359-6454(99)00314-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010742605
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s1359-6462(98)00437-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004859626
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1051/mattech/199179050019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085259611
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.1150568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679133
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.3555068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057973410
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.371507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058005910
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1098/rsta.2014.0128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043859926
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1107/s0021889809039867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017039297
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1107/s002188981102320x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034000445
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1107/s0108767313000172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042246759
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1107/s1600576715017689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018065113
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1107/s1600576717014558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092818382
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1460-2695.2007.01102.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021460351
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1115/1.2904232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062093006
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1179/174328406x130902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714067
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1179/mst.1994.10.11.947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323699
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1179/mst.1997.13.4.360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832050
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1243/030932405x30984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064446047
211 rdf:type schema:CreativeWork
212 https://doi.org/10.4028/www.scientific.net/msf.702-703.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072137310
213 rdf:type schema:CreativeWork
214 https://doi.org/10.7449/1992/superalloys_1992_467_476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099557817
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
217 schema:name CEA-INAC-MEM, 17 rue des Martyrs, 38000, Grenoble, France
218 CNRS, 17 rue des Martyrs, 38000, Grenoble, France
219 Université Grenoble Alpes, 38000, Grenoble, France
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.450308.a schema:alternateName Institut Néel
222 schema:name CEA-INAC-MEM, 17 rue des Martyrs, 38000, Grenoble, France
223 Université Grenoble Alpes, 38000, Grenoble, France
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.461892.0 schema:alternateName Institut Jean Lamour
226 schema:name IJL, UMR 7189 CNRS-Université de Lorraine, Nancy, France
227 Laboratoire d’Étude des Microstructures, UMR 104 CNRS-ONERA, 92322, Châtillon, France
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.462924.f schema:alternateName Laboratoire d'Etude des Microstructures
230 schema:name Laboratoire d’Étude des Microstructures, UMR 104 CNRS-ONERA, 92322, Châtillon, France
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.464172.2 schema:alternateName Inter university Material Research and Engineering Centre
233 schema:name CIRIMAT, UMR 5085 CNRS-UPS-INPT-ENSIACET, 31000, Toulouse, France
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...