Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-09

AUTHORS

Dexin Yang, Tao Yang, Yulong Chen, Yu Liang, Yan’gai Liu

ABSTRACT

Double perovskite La2CoMnO6 is an attractive spintronics with magnetoelectric, magnetodielectric, and magnetoresistive effects, which are related, at least in part, to combined structural and magnetic instabilities. To explore its magnetoelastic coupling behaviour, a conventional analysis of lattice parameter data in terms of spontaneous strain shows that the ferromagnetic ordering process is accompanied by significant volume (eaM) and shear (etM) strains. The DC and AC magnetic data reveal the antisite defects with antiphase regions, and the ferromagnetic transition is at ~ 230 K with a small antiferromagnetic ordering at about 170 K. In addition, the Rietveld refinement of the in situ variation X-ray diffraction from 120 to 1400 K, scanning electron microscopy, and differential scanning calorimetry were used to confirm the crystal structure, microstructure, magnetic, and structural anomalies of the sample synthesised in pure oxygen atmosphere. This study, and in particular the strain analysis, of La2CoMnO6 will facilitate its potential application in the field of spin electronics and thin-film engineering. More... »

PAGES

6027-6037

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-018-03306-6

DOI

http://dx.doi.org/10.1007/s10853-018-03306-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111312819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Dexin", 
        "id": "sg:person.011420625407.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420625407.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Clay Minerals, Ministry of Land and Resources, 310036, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.453137.7", 
          "name": [
            "College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China", 
            "Key Laboratory of Clay Minerals, Ministry of Land and Resources, 310036, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Tao", 
        "id": "sg:person.01350724070.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350724070.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yulong", 
        "id": "sg:person.01370314170.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370314170.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Technology, Shenyang University of Chemical Technology, 110142, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.412564.0", 
          "name": [
            "School of Materials Science and Technology, Shenyang University of Chemical Technology, 110142, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yu", 
        "id": "sg:person.016261564723.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261564723.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yan\u2019gai", 
        "id": "sg:person.010605666772.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605666772.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11581-014-1320-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023490004", 
          "https://doi.org/10.1007/s11581-014-1320-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-8874-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014294050", 
          "https://doi.org/10.1007/s10853-015-8874-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-09", 
    "datePublishedReg": "2019-01-09", 
    "description": "Double perovskite La2CoMnO6 is an attractive spintronics with magnetoelectric, magnetodielectric, and magnetoresistive effects, which are related, at least in part, to combined structural and magnetic instabilities. To explore its magnetoelastic coupling behaviour, a conventional analysis of lattice parameter data in terms of spontaneous strain shows that the ferromagnetic ordering process is accompanied by significant volume (eaM) and shear (etM) strains. The DC and AC magnetic data reveal the antisite defects with antiphase regions, and the ferromagnetic transition is at ~\u2009230\u00a0K with a small antiferromagnetic ordering at about 170\u00a0K. In addition, the Rietveld refinement of the in situ variation X-ray diffraction from 120 to 1400\u00a0K, scanning electron microscopy, and differential scanning calorimetry were used to confirm the crystal structure, microstructure, magnetic, and structural anomalies of the sample synthesised in pure oxygen atmosphere. This study, and in particular the strain analysis, of La2CoMnO6 will facilitate its potential application in the field of spin electronics and thin-film engineering.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-018-03306-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8275181", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "double perovskite La2CoMnO6", 
      "ferromagnetic ordering process", 
      "ac magnetic data", 
      "thin film engineering", 
      "spin electronics", 
      "magnetic instability", 
      "antiferromagnetic ordering", 
      "ferromagnetic transition", 
      "magnetoresistive effect", 
      "pure oxygen atmosphere", 
      "antiphase regions", 
      "La2CoMnO6", 
      "parameter data", 
      "ordering process", 
      "coupling behavior", 
      "magnetic data", 
      "differential scanning calorimetry", 
      "oxygen atmosphere", 
      "lattice parameter data", 
      "ray diffraction", 
      "electron microscopy", 
      "strain analysis", 
      "scanning calorimetry", 
      "potential applications", 
      "ferromagnetism", 
      "spintronics", 
      "conventional analysis", 
      "spontaneous strain", 
      "structure transition", 
      "significant volume", 
      "antisite defects", 
      "Rietveld refinement", 
      "microstructure", 
      "ordering", 
      "electronics", 
      "transition", 
      "DC", 
      "engineering", 
      "field", 
      "diffraction", 
      "coupling", 
      "instability", 
      "microscopy", 
      "atmosphere", 
      "calorimetry", 
      "terms", 
      "applications", 
      "crystal structure", 
      "behavior", 
      "structure", 
      "process", 
      "refinement", 
      "analysis", 
      "defects", 
      "data", 
      "volume", 
      "strains", 
      "addition", 
      "effect", 
      "anomalies", 
      "samples", 
      "part", 
      "region", 
      "study", 
      "structural anomalies", 
      "perovskite La2CoMnO6", 
      "attractive spintronics", 
      "magnetoelastic coupling behaviour", 
      "small antiferromagnetic ordering", 
      "situ variation X", 
      "variation X", 
      "magnetoelastic double perovskite La2CoMnO6"
    ], 
    "name": "Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6", 
    "pagination": "6027-6037", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111312819"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-018-03306-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-018-03306-6", 
      "https://app.dimensions.ai/details/publication/pub.1111312819"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_811.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-018-03306-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-03306-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-03306-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-03306-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-018-03306-6'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      99 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-018-03306-6 schema:about anzsrc-for:03
2 anzsrc-for:09
3 schema:author N7de63b248ec6460c99316b21d8bc8a84
4 schema:citation sg:pub.10.1007/s10853-015-8874-7
5 sg:pub.10.1007/s11581-014-1320-z
6 schema:datePublished 2019-01-09
7 schema:datePublishedReg 2019-01-09
8 schema:description Double perovskite La2CoMnO6 is an attractive spintronics with magnetoelectric, magnetodielectric, and magnetoresistive effects, which are related, at least in part, to combined structural and magnetic instabilities. To explore its magnetoelastic coupling behaviour, a conventional analysis of lattice parameter data in terms of spontaneous strain shows that the ferromagnetic ordering process is accompanied by significant volume (eaM) and shear (etM) strains. The DC and AC magnetic data reveal the antisite defects with antiphase regions, and the ferromagnetic transition is at ~ 230 K with a small antiferromagnetic ordering at about 170 K. In addition, the Rietveld refinement of the in situ variation X-ray diffraction from 120 to 1400 K, scanning electron microscopy, and differential scanning calorimetry were used to confirm the crystal structure, microstructure, magnetic, and structural anomalies of the sample synthesised in pure oxygen atmosphere. This study, and in particular the strain analysis, of La2CoMnO6 will facilitate its potential application in the field of spin electronics and thin-film engineering.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N3b13a50a152943978b0fcb81ab77154b
13 N8895fc2098394897ad0f0a0ff0554dbc
14 sg:journal.1312116
15 schema:keywords DC
16 La2CoMnO6
17 Rietveld refinement
18 ac magnetic data
19 addition
20 analysis
21 anomalies
22 antiferromagnetic ordering
23 antiphase regions
24 antisite defects
25 applications
26 atmosphere
27 attractive spintronics
28 behavior
29 calorimetry
30 conventional analysis
31 coupling
32 coupling behavior
33 crystal structure
34 data
35 defects
36 differential scanning calorimetry
37 diffraction
38 double perovskite La2CoMnO6
39 effect
40 electron microscopy
41 electronics
42 engineering
43 ferromagnetic ordering process
44 ferromagnetic transition
45 ferromagnetism
46 field
47 instability
48 lattice parameter data
49 magnetic data
50 magnetic instability
51 magnetoelastic coupling behaviour
52 magnetoelastic double perovskite La2CoMnO6
53 magnetoresistive effect
54 microscopy
55 microstructure
56 ordering
57 ordering process
58 oxygen atmosphere
59 parameter data
60 part
61 perovskite La2CoMnO6
62 potential applications
63 process
64 pure oxygen atmosphere
65 ray diffraction
66 refinement
67 region
68 samples
69 scanning calorimetry
70 significant volume
71 situ variation X
72 small antiferromagnetic ordering
73 spin electronics
74 spintronics
75 spontaneous strain
76 strain analysis
77 strains
78 structural anomalies
79 structure
80 structure transition
81 study
82 terms
83 thin film engineering
84 transition
85 variation X
86 volume
87 schema:name Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6
88 schema:pagination 6027-6037
89 schema:productId N286583d65d824712a0d3c9e7597562ae
90 N7e5ec96bac204039ba00166921d3723a
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111312819
92 https://doi.org/10.1007/s10853-018-03306-6
93 schema:sdDatePublished 2021-12-01T19:44
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N27cc1ebbdb7c46dcb5f227370ac7dbfd
96 schema:url https://doi.org/10.1007/s10853-018-03306-6
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N10be0a4a7be44150b989c676c3f7ac12 rdf:first sg:person.01370314170.41
101 rdf:rest N5e9fa9d9d08f4de5ba2712a813de2053
102 N27cc1ebbdb7c46dcb5f227370ac7dbfd schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N286583d65d824712a0d3c9e7597562ae schema:name dimensions_id
105 schema:value pub.1111312819
106 rdf:type schema:PropertyValue
107 N3b13a50a152943978b0fcb81ab77154b schema:issueNumber 8
108 rdf:type schema:PublicationIssue
109 N5e9fa9d9d08f4de5ba2712a813de2053 rdf:first sg:person.016261564723.44
110 rdf:rest Nb856fa6b1c964d8c9582291252a7f4cc
111 N7de63b248ec6460c99316b21d8bc8a84 rdf:first sg:person.011420625407.63
112 rdf:rest Nb1311f4cfd1940888852a33bc51d4c1c
113 N7e5ec96bac204039ba00166921d3723a schema:name doi
114 schema:value 10.1007/s10853-018-03306-6
115 rdf:type schema:PropertyValue
116 N8895fc2098394897ad0f0a0ff0554dbc schema:volumeNumber 54
117 rdf:type schema:PublicationVolume
118 Nb1311f4cfd1940888852a33bc51d4c1c rdf:first sg:person.01350724070.38
119 rdf:rest N10be0a4a7be44150b989c676c3f7ac12
120 Nb856fa6b1c964d8c9582291252a7f4cc rdf:first sg:person.010605666772.83
121 rdf:rest rdf:nil
122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
123 schema:name Chemical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 sg:grant.8275181 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-018-03306-6
129 rdf:type schema:MonetaryGrant
130 sg:journal.1312116 schema:issn 0022-2461
131 1573-4811
132 schema:name Journal of Materials Science
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010605666772.83 schema:affiliation grid-institutes:grid.162107.3
136 schema:familyName Liu
137 schema:givenName Yan’gai
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605666772.83
139 rdf:type schema:Person
140 sg:person.011420625407.63 schema:affiliation grid-institutes:grid.411963.8
141 schema:familyName Yang
142 schema:givenName Dexin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420625407.63
144 rdf:type schema:Person
145 sg:person.01350724070.38 schema:affiliation grid-institutes:grid.453137.7
146 schema:familyName Yang
147 schema:givenName Tao
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350724070.38
149 rdf:type schema:Person
150 sg:person.01370314170.41 schema:affiliation grid-institutes:grid.469325.f
151 schema:familyName Chen
152 schema:givenName Yulong
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370314170.41
154 rdf:type schema:Person
155 sg:person.016261564723.44 schema:affiliation grid-institutes:grid.412564.0
156 schema:familyName Liang
157 schema:givenName Yu
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261564723.44
159 rdf:type schema:Person
160 sg:pub.10.1007/s10853-015-8874-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014294050
161 https://doi.org/10.1007/s10853-015-8874-7
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11581-014-1320-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023490004
164 https://doi.org/10.1007/s11581-014-1320-z
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.162107.3 schema:alternateName School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, 100083, Beijing, China
167 schema:name School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, 100083, Beijing, China
168 rdf:type schema:Organization
169 grid-institutes:grid.411963.8 schema:alternateName College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China
170 schema:name College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China
171 rdf:type schema:Organization
172 grid-institutes:grid.412564.0 schema:alternateName School of Materials Science and Technology, Shenyang University of Chemical Technology, 110142, Shenyang, China
173 schema:name School of Materials Science and Technology, Shenyang University of Chemical Technology, 110142, Shenyang, China
174 rdf:type schema:Organization
175 grid-institutes:grid.453137.7 schema:alternateName Key Laboratory of Clay Minerals, Ministry of Land and Resources, 310036, Hangzhou, China
176 schema:name College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China
177 Key Laboratory of Clay Minerals, Ministry of Land and Resources, 310036, Hangzhou, China
178 rdf:type schema:Organization
179 grid-institutes:grid.469325.f schema:alternateName College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
180 schema:name College of Materials Science and Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...