Short-range antiferromagnetic correlations and large magnetic entropy change in (La0.5Pr0.5)0.67Ca0.33MnO3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-07

AUTHORS

Lili Chen, Jiyu Fan, Wei Tong, Dazhi Hu, Lei Zhang, Langsheng Ling, Li Pi, Yuheng Zhang, Hao Yang

ABSTRACT

We report a detailed study of magnetic properties in manganite (La0.5Pr0.5)0.67Ca0.33MnO3. In contrast to the usual beliefs, it shows an abnormal upturn deviation from the Curie–Weiss law on the inverse susceptibility curve. Such a non-Griffiths-like phase is further confirmed from the inverse double integrated intensities of electron paramagnetic resonance spectrum. Because La3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document} ions are substituted by Pr3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document} ions with 50% concentrations, the ratio of three ions (La3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document}, Pr3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document}, Ca2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2+}$$\end{document}) is close to 1 on A-site sublattice. As a result, some short-range antiferromagnetic (CO AFM) phases come into being in the system due to the existence of localized charge ordering states. Therefore, the upturn deviation from Curie–Weiss law originates from the appearance of short-range CO AFM correlations above TC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\text{C}}$$\end{document}. Additionally, a magnetic field-driven-metamagnetic transition is found, which gives a main contribution for the large magnetic entropy change (MEC) observed in this sample. Both the Arrott plot and the renormalized MEC curves testify that this transition belongs to first-order magnetic transition. The insignificant hysteresis loop indicate that the inevitable thermal hysteresis can be ignored in the present first-order material implying that it is a potential candidate for the cryogenic temperature magnetic refrigeration. More... »

PAGES

323-332

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-017-1518-3

DOI

http://dx.doi.org/10.1007/s10853-017-1518-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091505101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lili", 
        "id": "sg:person.016530267261.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530267261.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jiyu", 
        "id": "sg:person.011265215351.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Wei", 
        "id": "sg:person.0634215477.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634215477.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Dazhi", 
        "id": "sg:person.011420157061.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420157061.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "id": "sg:person.015247643660.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Langsheng", 
        "id": "sg:person.015553215647.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553215647.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pi", 
        "givenName": "Li", 
        "id": "sg:person.01065252511.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hao", 
        "id": "sg:person.01237113432.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237113432.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-016-0009-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005919260", 
          "https://doi.org/10.1038/s41598-016-0009-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386256a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817361", 
          "https://doi.org/10.1038/386256a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-07", 
    "datePublishedReg": "2017-09-07", 
    "description": "We report a detailed study of magnetic properties in manganite (La0.5Pr0.5)0.67Ca0.33MnO3. In contrast to the usual beliefs, it shows an abnormal upturn deviation from the Curie\u2013Weiss law on the inverse susceptibility curve. Such a non-Griffiths-like phase is further confirmed from the inverse double integrated intensities of electron paramagnetic resonance spectrum. Because La3+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{3+}$$\\end{document} ions are substituted by Pr3+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{3+}$$\\end{document} ions with 50% concentrations, the ratio of three ions (La3+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{3+}$$\\end{document}, Pr3+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{3+}$$\\end{document}, Ca2+\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^{2+}$$\\end{document}) is close to 1 on A-site sublattice. As a result, some short-range antiferromagnetic (CO AFM) phases come into being in the system due to the existence of localized charge ordering states. Therefore, the upturn deviation from Curie\u2013Weiss law originates from the appearance of short-range CO AFM correlations above TC\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_{\\text{C}}$$\\end{document}. Additionally, a magnetic field-driven-metamagnetic transition is found, which gives a main contribution for the large magnetic entropy change (MEC) observed in this sample. Both the Arrott plot and the renormalized MEC curves testify that this transition belongs to first-order magnetic transition. The insignificant hysteresis loop indicate that the inevitable thermal hysteresis can be ignored in the present first-order material implying that it is a potential candidate for the cryogenic temperature magnetic refrigeration.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-017-1518-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8125003", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8381356", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4803"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "magnetic entropy change", 
      "large magnetic entropy change", 
      "short-range antiferromagnetic correlations", 
      "Curie-Weiss law", 
      "first-order magnetic transition", 
      "temperature magnetic refrigeration", 
      "upturn deviation", 
      "electron paramagnetic resonance spectra", 
      "paramagnetic resonance spectra", 
      "AFM correlations", 
      "antiferromagnetic correlations", 
      "antiferromagnetic phase", 
      "like phase", 
      "metamagnetic transition", 
      "magnetic transition", 
      "magnetic refrigeration", 
      "entropy change", 
      "magnetic properties", 
      "resonance spectra", 
      "localized charge", 
      "inverse susceptibility curves", 
      "susceptibility curves", 
      "ions", 
      "Arrott plots", 
      "hysteresis loops", 
      "usual belief", 
      "transition", 
      "detailed study", 
      "thermal hysteresis", 
      "manganites", 
      "sublattice", 
      "potential candidate", 
      "spectra", 
      "phase", 
      "charge", 
      "intensity", 
      "deviation", 
      "state", 
      "properties", 
      "hysteresis", 
      "curves", 
      "inverse", 
      "existence", 
      "candidates", 
      "refrigeration", 
      "law", 
      "correlation", 
      "contribution", 
      "loop", 
      "ratio", 
      "system", 
      "main contribution", 
      "samples", 
      "implying", 
      "contrast", 
      "appearance", 
      "results", 
      "changes", 
      "plots", 
      "concentration", 
      "study", 
      "beliefs"
    ], 
    "name": "Short-range antiferromagnetic correlations and large magnetic entropy change in (La0.5Pr0.5)0.67Ca0.33MnO3", 
    "pagination": "323-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091505101"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-017-1518-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-017-1518-3", 
      "https://app.dimensions.ai/details/publication/pub.1091505101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_754.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-017-1518-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1518-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1518-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1518-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1518-3'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      88 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-017-1518-3 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nc458070bd5624f52a79b1910188aeaf5
4 schema:citation sg:pub.10.1038/386256a0
5 sg:pub.10.1038/s41598-016-0009-0
6 schema:datePublished 2017-09-07
7 schema:datePublishedReg 2017-09-07
8 schema:description We report a detailed study of magnetic properties in manganite (La0.5Pr0.5)0.67Ca0.33MnO3. In contrast to the usual beliefs, it shows an abnormal upturn deviation from the Curie–Weiss law on the inverse susceptibility curve. Such a non-Griffiths-like phase is further confirmed from the inverse double integrated intensities of electron paramagnetic resonance spectrum. Because La3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document} ions are substituted by Pr3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document} ions with 50% concentrations, the ratio of three ions (La3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document}, Pr3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3+}$$\end{document}, Ca2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2+}$$\end{document}) is close to 1 on A-site sublattice. As a result, some short-range antiferromagnetic (CO AFM) phases come into being in the system due to the existence of localized charge ordering states. Therefore, the upturn deviation from Curie–Weiss law originates from the appearance of short-range CO AFM correlations above TC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\text{C}}$$\end{document}. Additionally, a magnetic field-driven-metamagnetic transition is found, which gives a main contribution for the large magnetic entropy change (MEC) observed in this sample. Both the Arrott plot and the renormalized MEC curves testify that this transition belongs to first-order magnetic transition. The insignificant hysteresis loop indicate that the inevitable thermal hysteresis can be ignored in the present first-order material implying that it is a potential candidate for the cryogenic temperature magnetic refrigeration.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N55df044047c147d992cd47fc84920fca
12 N91cb42c495af482b91cd37f26c1c4e7c
13 sg:journal.1312116
14 schema:keywords AFM correlations
15 Arrott plots
16 Curie-Weiss law
17 antiferromagnetic correlations
18 antiferromagnetic phase
19 appearance
20 beliefs
21 candidates
22 changes
23 charge
24 concentration
25 contrast
26 contribution
27 correlation
28 curves
29 detailed study
30 deviation
31 electron paramagnetic resonance spectra
32 entropy change
33 existence
34 first-order magnetic transition
35 hysteresis
36 hysteresis loops
37 implying
38 intensity
39 inverse
40 inverse susceptibility curves
41 ions
42 large magnetic entropy change
43 law
44 like phase
45 localized charge
46 loop
47 magnetic entropy change
48 magnetic properties
49 magnetic refrigeration
50 magnetic transition
51 main contribution
52 manganites
53 metamagnetic transition
54 paramagnetic resonance spectra
55 phase
56 plots
57 potential candidate
58 properties
59 ratio
60 refrigeration
61 resonance spectra
62 results
63 samples
64 short-range antiferromagnetic correlations
65 spectra
66 state
67 study
68 sublattice
69 susceptibility curves
70 system
71 temperature magnetic refrigeration
72 thermal hysteresis
73 transition
74 upturn deviation
75 usual belief
76 schema:name Short-range antiferromagnetic correlations and large magnetic entropy change in (La0.5Pr0.5)0.67Ca0.33MnO3
77 schema:pagination 323-332
78 schema:productId N6ce4f9cdb9a3480593bf332d327850c3
79 N940f9ba752a04b34b8dd27d4a23d420c
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091505101
81 https://doi.org/10.1007/s10853-017-1518-3
82 schema:sdDatePublished 2022-10-01T06:43
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Ne67be30f7b924071a7e4180fd40f48df
85 schema:url https://doi.org/10.1007/s10853-017-1518-3
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N212f56c5a4c34b819af91474ab6f0d1d rdf:first sg:person.01237113432.79
90 rdf:rest rdf:nil
91 N55df044047c147d992cd47fc84920fca schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N5781fc75c5044d7eaf46ed32144f265e rdf:first sg:person.01065252511.17
94 rdf:rest Nc4c11f021042413cad109dcaa61121c1
95 N6ce4f9cdb9a3480593bf332d327850c3 schema:name dimensions_id
96 schema:value pub.1091505101
97 rdf:type schema:PropertyValue
98 N8964138713a144218db9b7c4c20be53e rdf:first sg:person.015553215647.82
99 rdf:rest N5781fc75c5044d7eaf46ed32144f265e
100 N91cb42c495af482b91cd37f26c1c4e7c schema:volumeNumber 53
101 rdf:type schema:PublicationVolume
102 N940f9ba752a04b34b8dd27d4a23d420c schema:name doi
103 schema:value 10.1007/s10853-017-1518-3
104 rdf:type schema:PropertyValue
105 N9c7c2dee4b0e48549e598dae6407a797 rdf:first sg:person.015247643660.97
106 rdf:rest N8964138713a144218db9b7c4c20be53e
107 Nabd5110d4af342ed93456cef5d8ba15c rdf:first sg:person.011420157061.69
108 rdf:rest N9c7c2dee4b0e48549e598dae6407a797
109 Nc0c3cbbb038f455ea703bc3a0a9f045c rdf:first sg:person.0634215477.07
110 rdf:rest Nabd5110d4af342ed93456cef5d8ba15c
111 Nc458070bd5624f52a79b1910188aeaf5 rdf:first sg:person.016530267261.59
112 rdf:rest Nfce0d9a504304db9a7dc0df25ca45614
113 Nc4c11f021042413cad109dcaa61121c1 rdf:first sg:person.01117171420.13
114 rdf:rest N212f56c5a4c34b819af91474ab6f0d1d
115 Ne67be30f7b924071a7e4180fd40f48df schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nfce0d9a504304db9a7dc0df25ca45614 rdf:first sg:person.011265215351.18
118 rdf:rest Nc0c3cbbb038f455ea703bc3a0a9f045c
119 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
120 schema:name Chemical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
123 schema:name Inorganic Chemistry
124 rdf:type schema:DefinedTerm
125 sg:grant.8125003 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-017-1518-3
126 rdf:type schema:MonetaryGrant
127 sg:grant.8381356 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-017-1518-3
128 rdf:type schema:MonetaryGrant
129 sg:journal.1312116 schema:issn 0022-2461
130 1573-4803
131 schema:name Journal of Materials Science
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01065252511.17 schema:affiliation grid-institutes:grid.467854.c
135 schema:familyName Pi
136 schema:givenName Li
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17
138 rdf:type schema:Person
139 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.467854.c
140 schema:familyName Zhang
141 schema:givenName Yuheng
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
143 rdf:type schema:Person
144 sg:person.011265215351.18 schema:affiliation grid-institutes:grid.64938.30
145 schema:familyName Fan
146 schema:givenName Jiyu
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18
148 rdf:type schema:Person
149 sg:person.011420157061.69 schema:affiliation grid-institutes:grid.64938.30
150 schema:familyName Hu
151 schema:givenName Dazhi
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420157061.69
153 rdf:type schema:Person
154 sg:person.01237113432.79 schema:affiliation grid-institutes:grid.64938.30
155 schema:familyName Yang
156 schema:givenName Hao
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237113432.79
158 rdf:type schema:Person
159 sg:person.015247643660.97 schema:affiliation grid-institutes:grid.467854.c
160 schema:familyName Zhang
161 schema:givenName Lei
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97
163 rdf:type schema:Person
164 sg:person.015553215647.82 schema:affiliation grid-institutes:grid.467854.c
165 schema:familyName Ling
166 schema:givenName Langsheng
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553215647.82
168 rdf:type schema:Person
169 sg:person.016530267261.59 schema:affiliation grid-institutes:grid.64938.30
170 schema:familyName Chen
171 schema:givenName Lili
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530267261.59
173 rdf:type schema:Person
174 sg:person.0634215477.07 schema:affiliation grid-institutes:grid.467854.c
175 schema:familyName Tong
176 schema:givenName Wei
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634215477.07
178 rdf:type schema:Person
179 sg:pub.10.1038/386256a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817361
180 https://doi.org/10.1038/386256a0
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/s41598-016-0009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005919260
183 https://doi.org/10.1038/s41598-016-0009-0
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.467854.c schema:alternateName Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
186 schema:name Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
187 rdf:type schema:Organization
188 grid-institutes:grid.64938.30 schema:alternateName Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
189 schema:name Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...