Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-06

AUTHORS

Garvit Agarwal, Avinash M. Dongare

ABSTRACT

The ‘quasi-coarse-grained dynamics’ (QCGD) method is extended to model the thermodynamic behavior and the shock response of HCP Ti systems at the mesoscales by coarse-graining the atomistic microstructure using representative atoms (R-atoms) and scaled interatomic potentials. To demonstrate the capability of the QCGD method, the melting behavior of a single-crystal slab of HCP Ti and the dynamic failure (spallation) behavior of nanocrystalline systems under shock loading conditions are first investigated using molecular dynamics (MD) simulations using an embedded atom method interatomic potential for Ti. The melting simulation suggests an interplay between the nucleation and propagation of the surface-induced heterogeneous melting and the nucleation and propagation of bulk homogeneous melting of the system. In addition, the spall strengths calculated using MD at strain rates of 1010 s−1 allow the development of improved models for the strain rate dependence of the spall strength determined experimentally at 105 s−1. The QCGD method is observed to be capable of reproducing the MD-predicted kinetics of melting and the shock response and spall failure of nanocrystalline Ti systems using a coarse-grained microstructure comprising of representative atoms (R-atoms). The QCGD simulations demonstrate the ability to model the mesoscale behavior of Ti systems by modeling the shock deformation and failure due to spallation of a 1 µm × 1 µm × 2 µm sized system at strain rates of 108 s−1 to bridge the gap between MD simulations and experiments. More... »

PAGES

10853-10870

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-017-1243-y

DOI

http://dx.doi.org/10.1007/s10853-017-1243-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085886456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agarwal", 
        "givenName": "Garvit", 
        "id": "sg:person.07415117350.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415117350.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dongare", 
        "givenName": "Avinash M.", 
        "id": "sg:person.0713746063.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713746063.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02914684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040013792", 
          "https://doi.org/10.1007/bf02914684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-004-0205-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010766", 
          "https://doi.org/10.1007/s11661-004-0205-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-06", 
    "datePublishedReg": "2017-06-06", 
    "description": "The \u2018quasi-coarse-grained dynamics\u2019 (QCGD) method is extended to model the thermodynamic behavior and the shock response of HCP Ti systems at the mesoscales by coarse-graining the atomistic microstructure using representative atoms (R-atoms) and scaled interatomic potentials. To demonstrate the capability of the QCGD method, the melting behavior of a single-crystal slab of HCP Ti and the dynamic failure (spallation) behavior of nanocrystalline systems under shock loading conditions are first investigated using molecular dynamics (MD) simulations using an embedded atom method interatomic potential for Ti. The melting simulation suggests an interplay between the nucleation and propagation of the surface-induced heterogeneous melting and the nucleation and propagation of bulk homogeneous melting of the system. In addition, the spall strengths calculated using MD at strain rates of 1010\u00a0s\u22121 allow the development of improved models for the strain rate dependence of the spall strength determined experimentally at 105\u00a0s\u22121. The QCGD method is observed to be capable of reproducing the MD-predicted kinetics of melting and the shock response and spall failure of nanocrystalline Ti systems using a coarse-grained microstructure comprising of representative atoms (R-atoms). The QCGD simulations demonstrate the ability to model the mesoscale behavior of Ti systems by modeling the shock deformation and failure due to spallation of a 1\u00a0\u00b5m\u00a0\u00d7\u00a01\u00a0\u00b5m\u00a0\u00d7\u00a02\u00a0\u00b5m sized system at strain rates of 108\u00a0s\u22121 to bridge the gap between MD simulations and experiments.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-017-1243-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4803"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "18", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "spall strength", 
      "strain rate", 
      "Ti system", 
      "shock loading conditions", 
      "dynamic failure behavior", 
      "strain rate dependence", 
      "QCGD simulations", 
      "embedded atom method interatomic potential", 
      "failure behavior", 
      "spall failure", 
      "loading conditions", 
      "microstructure comprising", 
      "atom method interatomic potential", 
      "kinetics of melting", 
      "mesoscale behavior", 
      "nanocrystalline systems", 
      "thermodynamic behavior", 
      "atomistic microstructure", 
      "method interatomic potential", 
      "hcp-Ti", 
      "rate dependence", 
      "interatomic potentials", 
      "improved model", 
      "atomic scale", 
      "simulations", 
      "sized systems", 
      "melting simulations", 
      "single-crystal slabs", 
      "heterogeneous melting", 
      "shock deformation", 
      "mesoscale", 
      "nucleation", 
      "Ti", 
      "dynamics simulations", 
      "melting", 
      "melting behavior", 
      "molecular dynamics simulations", 
      "strength", 
      "propagation", 
      "microstructure", 
      "spallation", 
      "homogeneous melting", 
      "deformation", 
      "behavior", 
      "representative atoms", 
      "system", 
      "slab", 
      "method", 
      "MD simulations", 
      "capability", 
      "shock response", 
      "kinetics", 
      "failure", 
      "potential", 
      "comprising", 
      "conditions", 
      "dependence", 
      "experiments", 
      "rate", 
      "model", 
      "dynamics", 
      "gap", 
      "atoms", 
      "addition", 
      "scale", 
      "response", 
      "MD", 
      "development", 
      "ability", 
      "interplay"
    ], 
    "name": "Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales", 
    "pagination": "10853-10870", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085886456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-017-1243-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-017-1243-y", 
      "https://app.dimensions.ai/details/publication/pub.1085886456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-017-1243-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1243-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1243-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1243-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-017-1243-y'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      96 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-017-1243-y schema:about anzsrc-for:03
2 anzsrc-for:09
3 schema:author N1ed81503088a44199bb99ccca45a2e85
4 schema:citation sg:pub.10.1007/bf02914684
5 sg:pub.10.1007/s11661-004-0205-6
6 schema:datePublished 2017-06-06
7 schema:datePublishedReg 2017-06-06
8 schema:description The ‘quasi-coarse-grained dynamics’ (QCGD) method is extended to model the thermodynamic behavior and the shock response of HCP Ti systems at the mesoscales by coarse-graining the atomistic microstructure using representative atoms (R-atoms) and scaled interatomic potentials. To demonstrate the capability of the QCGD method, the melting behavior of a single-crystal slab of HCP Ti and the dynamic failure (spallation) behavior of nanocrystalline systems under shock loading conditions are first investigated using molecular dynamics (MD) simulations using an embedded atom method interatomic potential for Ti. The melting simulation suggests an interplay between the nucleation and propagation of the surface-induced heterogeneous melting and the nucleation and propagation of bulk homogeneous melting of the system. In addition, the spall strengths calculated using MD at strain rates of 1010 s−1 allow the development of improved models for the strain rate dependence of the spall strength determined experimentally at 105 s−1. The QCGD method is observed to be capable of reproducing the MD-predicted kinetics of melting and the shock response and spall failure of nanocrystalline Ti systems using a coarse-grained microstructure comprising of representative atoms (R-atoms). The QCGD simulations demonstrate the ability to model the mesoscale behavior of Ti systems by modeling the shock deformation and failure due to spallation of a 1 µm × 1 µm × 2 µm sized system at strain rates of 108 s−1 to bridge the gap between MD simulations and experiments.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N87fbcdb4347a4b2286b0a9370e5bd76a
12 Nfd88868978004c83a6a6017061f97c74
13 sg:journal.1312116
14 schema:keywords MD
15 MD simulations
16 QCGD simulations
17 Ti
18 Ti system
19 ability
20 addition
21 atom method interatomic potential
22 atomic scale
23 atomistic microstructure
24 atoms
25 behavior
26 capability
27 comprising
28 conditions
29 deformation
30 dependence
31 development
32 dynamic failure behavior
33 dynamics
34 dynamics simulations
35 embedded atom method interatomic potential
36 experiments
37 failure
38 failure behavior
39 gap
40 hcp-Ti
41 heterogeneous melting
42 homogeneous melting
43 improved model
44 interatomic potentials
45 interplay
46 kinetics
47 kinetics of melting
48 loading conditions
49 melting
50 melting behavior
51 melting simulations
52 mesoscale
53 mesoscale behavior
54 method
55 method interatomic potential
56 microstructure
57 microstructure comprising
58 model
59 molecular dynamics simulations
60 nanocrystalline systems
61 nucleation
62 potential
63 propagation
64 rate
65 rate dependence
66 representative atoms
67 response
68 scale
69 shock deformation
70 shock loading conditions
71 shock response
72 simulations
73 single-crystal slabs
74 sized systems
75 slab
76 spall failure
77 spall strength
78 spallation
79 strain rate
80 strain rate dependence
81 strength
82 system
83 thermodynamic behavior
84 schema:name Modeling the thermodynamic behavior and shock response of Ti systems at the atomic scales and the mesoscales
85 schema:pagination 10853-10870
86 schema:productId N36f62a7ec4964660b9c6be7de5682ec0
87 N611dca6bfa3d4bd2af7174beb95042b7
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886456
89 https://doi.org/10.1007/s10853-017-1243-y
90 schema:sdDatePublished 2022-12-01T06:36
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N4a8ea508dac04955886e41fec1d70922
93 schema:url https://doi.org/10.1007/s10853-017-1243-y
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N1ed81503088a44199bb99ccca45a2e85 rdf:first sg:person.07415117350.81
98 rdf:rest Nb9e11367460d4d808d5363bb89e24de8
99 N36f62a7ec4964660b9c6be7de5682ec0 schema:name dimensions_id
100 schema:value pub.1085886456
101 rdf:type schema:PropertyValue
102 N4a8ea508dac04955886e41fec1d70922 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N611dca6bfa3d4bd2af7174beb95042b7 schema:name doi
105 schema:value 10.1007/s10853-017-1243-y
106 rdf:type schema:PropertyValue
107 N87fbcdb4347a4b2286b0a9370e5bd76a schema:issueNumber 18
108 rdf:type schema:PublicationIssue
109 Nb9e11367460d4d808d5363bb89e24de8 rdf:first sg:person.0713746063.01
110 rdf:rest rdf:nil
111 Nfd88868978004c83a6a6017061f97c74 schema:volumeNumber 52
112 rdf:type schema:PublicationVolume
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 sg:journal.1312116 schema:issn 0022-2461
120 1573-4803
121 schema:name Journal of Materials Science
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.0713746063.01 schema:affiliation grid-institutes:grid.63054.34
125 schema:familyName Dongare
126 schema:givenName Avinash M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713746063.01
128 rdf:type schema:Person
129 sg:person.07415117350.81 schema:affiliation grid-institutes:grid.63054.34
130 schema:familyName Agarwal
131 schema:givenName Garvit
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415117350.81
133 rdf:type schema:Person
134 sg:pub.10.1007/bf02914684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040013792
135 https://doi.org/10.1007/bf02914684
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11661-004-0205-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010766
138 https://doi.org/10.1007/s11661-004-0205-6
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.63054.34 schema:alternateName Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
141 schema:name Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...