Theoretical study on the dislocation structure of parent–martensite interface in a magnetic shape memory alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07

AUTHORS

X. Ma, Z. Z. Wei, X. P. Zhang

ABSTRACT

Ferromagnetic shape memory alloys have received increasing interest and have great potential for actuator and sensor applications, the mobility of the parent–martensite interphase interface in such alloys is determined by its interfacial structure and the migration mechanism; therefore, a thorough understanding of its nature is essential. In the present paper, the parent–martensite interface in a Ni2MnGa alloy is studied in the light of the topological model of martensite transformation crystallography, where the habit plane is envisaged comprising coherent terraces and steps. The coherency strains arising on the terrace plane are accommodated by a network of interfacial dislocations, e.g., twinning dislocations originating in the martensite phase, and disconnections. The topological parameters of these defects, i.e., the Burgers vectors, line directions, and dislocation spacings are quantified via rigorous crystallographic analysis and matrix algorithm based on the Frank-Bilby equation. Consequently, martensite transformation crystallographic features, e.g., the habit plane index and the orientation relationship, in the Ni2MnGa alloy are determined and found to be in good agreement with the results predicted by the well-established phenomenological theory. More... »

PAGES

4648-4655

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-014-8168-5

DOI

http://dx.doi.org/10.1007/s10853-014-8168-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039641130


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "South China University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.79703.3a", 
          "name": [
            "School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "X.", 
        "id": "sg:person.014313010165.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313010165.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.79703.3a", 
          "name": [
            "School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Z. Z.", 
        "id": "sg:person.014577431241.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577431241.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.79703.3a", 
          "name": [
            "School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "X. P.", 
        "id": "sg:person.01325634453.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325634453.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0001-6160(62)90108-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000071493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(62)90108-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000071493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90081-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90081-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-49173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001097296", 
          "https://doi.org/10.1007/978-3-642-49173-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-49173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001097296", 
          "https://doi.org/10.1007/978-3-642-49173-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2009.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002305961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2005.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004434492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90084-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012019259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(93)90084-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012019259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2004.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012761461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5247-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012865959", 
          "https://doi.org/10.1007/s10853-011-5247-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(53)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013007457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(53)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013007457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(02)00128-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013425809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430410001701751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013678863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015709714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430902956440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025336000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2012.03.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027437074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839.2014.899436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030960678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889806027488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032094588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201002753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034506992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201002753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034506992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039130601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039135360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2006.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046564337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047793327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(79)90028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047793327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00395-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052456852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00395-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052456852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.117637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057681845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1722021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057789024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2043250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12693/aphyspola.122.493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064623066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07", 
    "datePublishedReg": "2014-07-01", 
    "description": "Ferromagnetic shape memory alloys have received increasing interest and have great potential for actuator and sensor applications, the mobility of the parent\u2013martensite interphase interface in such alloys is determined by its interfacial structure and the migration mechanism; therefore, a thorough understanding of its nature is essential. In the present paper, the parent\u2013martensite interface in a Ni2MnGa alloy is studied in the light of the topological model of martensite transformation crystallography, where the habit plane is envisaged comprising coherent terraces and steps. The coherency strains arising on the terrace plane are accommodated by a network of interfacial dislocations, e.g., twinning dislocations originating in the martensite phase, and disconnections. The topological parameters of these defects, i.e., the Burgers vectors, line directions, and dislocation spacings are quantified via rigorous crystallographic analysis and matrix algorithm based on the Frank-Bilby equation. Consequently, martensite transformation crystallographic features, e.g., the habit plane index and the orientation relationship, in the Ni2MnGa alloy are determined and found to be in good agreement with the results predicted by the well-established phenomenological theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10853-014-8168-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4984768", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4975576", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Theoretical study on the dislocation structure of parent\u2013martensite interface in a magnetic shape memory alloy", 
    "pagination": "4648-4655", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bcd4f6b9a4e4b996a93cb91dd3cb2a44ddbdd9b005903035dfba653d0c6c2a6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-014-8168-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039641130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-014-8168-5", 
      "https://app.dimensions.ai/details/publication/pub.1039641130"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10853-014-8168-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-014-8168-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-014-8168-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-014-8168-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-014-8168-5'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-014-8168-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc2b47d9e9125440c8c360454cb6e366a
4 schema:citation sg:pub.10.1007/978-3-642-49173-3
5 sg:pub.10.1007/s10853-011-5247-8
6 https://doi.org/10.1002/adma.201002753
7 https://doi.org/10.1016/0001-6160(53)90005-4
8 https://doi.org/10.1016/0001-6160(62)90108-6
9 https://doi.org/10.1016/0001-6160(79)90028-2
10 https://doi.org/10.1016/0001-6160(79)90081-6
11 https://doi.org/10.1016/0956-7151(93)90084-6
12 https://doi.org/10.1016/j.actamat.2005.12.030
13 https://doi.org/10.1016/j.actamat.2007.04.045
14 https://doi.org/10.1016/j.actamat.2012.03.045
15 https://doi.org/10.1016/j.jnucmat.2006.12.009
16 https://doi.org/10.1016/j.pmatsci.2004.04.002
17 https://doi.org/10.1016/j.pmatsci.2009.04.001
18 https://doi.org/10.1016/j.pmatsci.2009.06.001
19 https://doi.org/10.1016/j.scriptamat.2005.12.020
20 https://doi.org/10.1016/s1359-6454(03)00395-1
21 https://doi.org/10.1016/s1359-6462(02)00128-8
22 https://doi.org/10.1063/1.117637
23 https://doi.org/10.1063/1.1722021
24 https://doi.org/10.1063/1.2043250
25 https://doi.org/10.1080/09500839.2014.899436
26 https://doi.org/10.1080/14786430410001701751
27 https://doi.org/10.1080/14786430902956440
28 https://doi.org/10.1103/physrevb.74.224443
29 https://doi.org/10.1107/s0021889806027488
30 https://doi.org/10.12693/aphyspola.122.493
31 schema:datePublished 2014-07
32 schema:datePublishedReg 2014-07-01
33 schema:description Ferromagnetic shape memory alloys have received increasing interest and have great potential for actuator and sensor applications, the mobility of the parent–martensite interphase interface in such alloys is determined by its interfacial structure and the migration mechanism; therefore, a thorough understanding of its nature is essential. In the present paper, the parent–martensite interface in a Ni2MnGa alloy is studied in the light of the topological model of martensite transformation crystallography, where the habit plane is envisaged comprising coherent terraces and steps. The coherency strains arising on the terrace plane are accommodated by a network of interfacial dislocations, e.g., twinning dislocations originating in the martensite phase, and disconnections. The topological parameters of these defects, i.e., the Burgers vectors, line directions, and dislocation spacings are quantified via rigorous crystallographic analysis and matrix algorithm based on the Frank-Bilby equation. Consequently, martensite transformation crystallographic features, e.g., the habit plane index and the orientation relationship, in the Ni2MnGa alloy are determined and found to be in good agreement with the results predicted by the well-established phenomenological theory.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0581c8ecd93848c7b01f38f2e6542091
38 N13a9e51652244a94b1610c2d5940abe8
39 sg:journal.1312116
40 schema:name Theoretical study on the dislocation structure of parent–martensite interface in a magnetic shape memory alloy
41 schema:pagination 4648-4655
42 schema:productId N4e1127d1912a4314b15f6c524f16b398
43 N5af9830ac0414036aab58492c0de8fc7
44 N6408de0d79d641b09b94b0dd10d10b2e
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039641130
46 https://doi.org/10.1007/s10853-014-8168-5
47 schema:sdDatePublished 2019-04-10T21:37
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1f22ffd70bcf4016aab1fbd682bcef44
50 schema:url http://link.springer.com/10.1007%2Fs10853-014-8168-5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0581c8ecd93848c7b01f38f2e6542091 schema:volumeNumber 49
55 rdf:type schema:PublicationVolume
56 N0e78a73cb52c4fc1a76f6e6e73a8706e rdf:first sg:person.014577431241.41
57 rdf:rest Nc13790755c874d619a8773efb2bf5d0a
58 N13a9e51652244a94b1610c2d5940abe8 schema:issueNumber 13
59 rdf:type schema:PublicationIssue
60 N1f22ffd70bcf4016aab1fbd682bcef44 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N4e1127d1912a4314b15f6c524f16b398 schema:name readcube_id
63 schema:value bcd4f6b9a4e4b996a93cb91dd3cb2a44ddbdd9b005903035dfba653d0c6c2a6b
64 rdf:type schema:PropertyValue
65 N5af9830ac0414036aab58492c0de8fc7 schema:name dimensions_id
66 schema:value pub.1039641130
67 rdf:type schema:PropertyValue
68 N6408de0d79d641b09b94b0dd10d10b2e schema:name doi
69 schema:value 10.1007/s10853-014-8168-5
70 rdf:type schema:PropertyValue
71 Nc13790755c874d619a8773efb2bf5d0a rdf:first sg:person.01325634453.52
72 rdf:rest rdf:nil
73 Nc2b47d9e9125440c8c360454cb6e366a rdf:first sg:person.014313010165.23
74 rdf:rest N0e78a73cb52c4fc1a76f6e6e73a8706e
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
79 schema:name Materials Engineering
80 rdf:type schema:DefinedTerm
81 sg:grant.4975576 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-014-8168-5
82 rdf:type schema:MonetaryGrant
83 sg:grant.4984768 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-014-8168-5
84 rdf:type schema:MonetaryGrant
85 sg:journal.1312116 schema:issn 0022-2461
86 1573-4811
87 schema:name Journal of Materials Science
88 rdf:type schema:Periodical
89 sg:person.01325634453.52 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
90 schema:familyName Zhang
91 schema:givenName X. P.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325634453.52
93 rdf:type schema:Person
94 sg:person.014313010165.23 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
95 schema:familyName Ma
96 schema:givenName X.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313010165.23
98 rdf:type schema:Person
99 sg:person.014577431241.41 schema:affiliation https://www.grid.ac/institutes/grid.79703.3a
100 schema:familyName Wei
101 schema:givenName Z. Z.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577431241.41
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-642-49173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001097296
105 https://doi.org/10.1007/978-3-642-49173-3
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10853-011-5247-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012865959
108 https://doi.org/10.1007/s10853-011-5247-8
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/adma.201002753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034506992
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0001-6160(53)90005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013007457
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0001-6160(62)90108-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000071493
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0001-6160(79)90028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047793327
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0001-6160(79)90081-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000950444
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0956-7151(93)90084-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019259
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.actamat.2005.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039135360
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.actamat.2007.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039130601
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.actamat.2012.03.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027437074
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jnucmat.2006.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046564337
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.pmatsci.2004.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012761461
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.pmatsci.2009.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002305961
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.pmatsci.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015709714
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.scriptamat.2005.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004434492
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1359-6454(03)00395-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052456852
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1359-6462(02)00128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013425809
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.117637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057681845
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.1722021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789024
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.2043250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836618
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/09500839.2014.899436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030960678
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/14786430410001701751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013678863
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/14786430902956440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025336000
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.74.224443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619550
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1107/s0021889806027488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032094588
157 rdf:type schema:CreativeWork
158 https://doi.org/10.12693/aphyspola.122.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064623066
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.79703.3a schema:alternateName South China University of Technology
161 schema:name School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, People’s Republic of China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...