Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12-28

AUTHORS

T. S. Srivatsan, C. Godbole, M. Paramsothy, M. Gupta

ABSTRACT

Magnesium alloy (AZ31) based metal matrix composite reinforced with carbon nanotubes (CNTs) was fabricated using the technique of disintegrated melt deposition followed by hot extrusion. In this research paper, the microstructure, hardness, tensile properties, tensile fracture, high cycle fatigue characteristics, and final fracture behavior of CNTs-reinforced magnesium alloy composite (denoted as AZ31/1.0 vol.% CNT or AZ31/CNT) is presented, discussed, and compared with the unreinforced counterpart (AZ31). The elastic modulus, yield strength, tensile strength of the reinforced magnesium alloy was noticeably higher compared to the unreinforced counterpart. The ductility, quantified both by elongation-to-failure and reduction in cross-section area of the composite was higher than the monolithic counterpart. A comparison of the CNT-reinforced magnesium alloy with the unreinforced counterpart revealed a noticeable improvement in cyclic fatigue life at the load ratios tested. At all values of maximum stress, both the reinforced and unreinforced magnesium alloy was found to degrade the cyclic fatigue life at a lower ratio, i.e., under conditions of fully reversed loading. The viable mechanisms responsible for the enhanced cyclic fatigue life and tensile behavior of the composite are rationalized in light of macroscopic fracture mode and intrinsic microscopic mechanisms governing fracture. More... »

PAGES

3621-3638

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-011-6209-x

DOI

http://dx.doi.org/10.1007/s10853-011-6209-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000803605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godbole", 
        "givenName": "C.", 
        "id": "sg:person.07617125371.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617125371.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paramsothy", 
        "givenName": "M.", 
        "id": "sg:person.016271165327.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271165327.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "M.", 
        "id": "sg:person.011617427370.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617427370.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-000-1014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039666874", 
          "https://doi.org/10.1007/s11661-000-1014-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105994999770346792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007196117", 
          "https://doi.org/10.1361/105994999770346792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5358-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009102724", 
          "https://doi.org/10.1007/s10853-011-5358-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-28", 
    "datePublishedReg": "2011-12-28", 
    "description": "Magnesium alloy (AZ31) based metal matrix composite reinforced with carbon nanotubes (CNTs) was fabricated using the technique of disintegrated melt deposition followed by hot extrusion. In this research paper, the microstructure, hardness, tensile properties, tensile fracture, high cycle fatigue characteristics, and final fracture behavior of CNTs-reinforced magnesium alloy composite (denoted as AZ31/1.0 vol.% CNT or AZ31/CNT) is presented, discussed, and compared with the unreinforced counterpart (AZ31). The elastic modulus, yield strength, tensile strength of the reinforced magnesium alloy was noticeably higher compared to the unreinforced counterpart. The ductility, quantified both by elongation-to-failure and reduction in cross-section area of the composite was higher than the monolithic counterpart. A comparison of the CNT-reinforced magnesium alloy with the unreinforced counterpart revealed a noticeable improvement in cyclic fatigue life at the load ratios tested. At all values of maximum stress, both the reinforced and unreinforced magnesium alloy was found to degrade the cyclic fatigue life at a lower ratio, i.e., under conditions of fully reversed loading. The viable mechanisms responsible for the enhanced cyclic fatigue life and tensile behavior of the composite are rationalized in light of macroscopic fracture mode and intrinsic microscopic mechanisms governing fracture.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10853-011-6209-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "final fracture behavior", 
      "magnesium alloy", 
      "cyclic fatigue life", 
      "unreinforced counterpart", 
      "fatigue life", 
      "fracture behavior", 
      "high cycle fatigue characteristics", 
      "unreinforced magnesium alloy", 
      "intrinsic microscopic mechanisms", 
      "macroscopic fracture mode", 
      "metal matrix composites", 
      "carbon nanotube reinforcement", 
      "carbon nanotubes", 
      "melt deposition", 
      "matrix composites", 
      "hot extrusion", 
      "reversed loading", 
      "nanotube reinforcement", 
      "yield strength", 
      "fracture mode", 
      "monolithic counterparts", 
      "tensile behavior", 
      "load ratio", 
      "tensile properties", 
      "fatigue characteristics", 
      "tensile strength", 
      "maximum stress", 
      "tensile fracture", 
      "tensile deformation", 
      "cyclic fatigue", 
      "alloy", 
      "elastic modulus", 
      "cross-section area", 
      "noticeable improvement", 
      "ductility", 
      "strength", 
      "microscopic mechanism", 
      "composites", 
      "microstructure", 
      "hardness", 
      "modulus", 
      "deformation", 
      "loading", 
      "fractures", 
      "behavior", 
      "reinforcement", 
      "extrusion", 
      "nanotubes", 
      "deposition", 
      "fatigue", 
      "elongation", 
      "viable mechanism", 
      "properties", 
      "ratio", 
      "stress", 
      "research paper", 
      "mode", 
      "characteristics", 
      "influence", 
      "conditions", 
      "technique", 
      "low ratio", 
      "counterparts", 
      "improvement", 
      "reduction", 
      "mechanism", 
      "failure", 
      "comparison", 
      "values", 
      "area", 
      "light", 
      "life", 
      "paper", 
      "cycle fatigue characteristics", 
      "enhanced cyclic fatigue life", 
      "nano-sized carbon nanotube reinforcements"
    ], 
    "name": "Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy", 
    "pagination": "3621-3638", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000803605"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-011-6209-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-011-6209-x", 
      "https://app.dimensions.ai/details/publication/pub.1000803605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10853-011-6209-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-011-6209-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-011-6209-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-011-6209-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-011-6209-x'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      104 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-011-6209-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N553dcb4147624a5698fff7aad9c3bdf8
4 schema:citation sg:pub.10.1007/s10853-011-5358-2
5 sg:pub.10.1007/s11661-000-1014-1
6 sg:pub.10.1361/105994999770346792
7 schema:datePublished 2011-12-28
8 schema:datePublishedReg 2011-12-28
9 schema:description Magnesium alloy (AZ31) based metal matrix composite reinforced with carbon nanotubes (CNTs) was fabricated using the technique of disintegrated melt deposition followed by hot extrusion. In this research paper, the microstructure, hardness, tensile properties, tensile fracture, high cycle fatigue characteristics, and final fracture behavior of CNTs-reinforced magnesium alloy composite (denoted as AZ31/1.0 vol.% CNT or AZ31/CNT) is presented, discussed, and compared with the unreinforced counterpart (AZ31). The elastic modulus, yield strength, tensile strength of the reinforced magnesium alloy was noticeably higher compared to the unreinforced counterpart. The ductility, quantified both by elongation-to-failure and reduction in cross-section area of the composite was higher than the monolithic counterpart. A comparison of the CNT-reinforced magnesium alloy with the unreinforced counterpart revealed a noticeable improvement in cyclic fatigue life at the load ratios tested. At all values of maximum stress, both the reinforced and unreinforced magnesium alloy was found to degrade the cyclic fatigue life at a lower ratio, i.e., under conditions of fully reversed loading. The viable mechanisms responsible for the enhanced cyclic fatigue life and tensile behavior of the composite are rationalized in light of macroscopic fracture mode and intrinsic microscopic mechanisms governing fracture.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0170ba111bf04c96abf2cfb6dffc1c53
14 N5538aafddf494b368b380a1571b6a967
15 sg:journal.1312116
16 schema:keywords alloy
17 area
18 behavior
19 carbon nanotube reinforcement
20 carbon nanotubes
21 characteristics
22 comparison
23 composites
24 conditions
25 counterparts
26 cross-section area
27 cycle fatigue characteristics
28 cyclic fatigue
29 cyclic fatigue life
30 deformation
31 deposition
32 ductility
33 elastic modulus
34 elongation
35 enhanced cyclic fatigue life
36 extrusion
37 failure
38 fatigue
39 fatigue characteristics
40 fatigue life
41 final fracture behavior
42 fracture behavior
43 fracture mode
44 fractures
45 hardness
46 high cycle fatigue characteristics
47 hot extrusion
48 improvement
49 influence
50 intrinsic microscopic mechanisms
51 life
52 light
53 load ratio
54 loading
55 low ratio
56 macroscopic fracture mode
57 magnesium alloy
58 matrix composites
59 maximum stress
60 mechanism
61 melt deposition
62 metal matrix composites
63 microscopic mechanism
64 microstructure
65 mode
66 modulus
67 monolithic counterparts
68 nano-sized carbon nanotube reinforcements
69 nanotube reinforcement
70 nanotubes
71 noticeable improvement
72 paper
73 properties
74 ratio
75 reduction
76 reinforcement
77 research paper
78 reversed loading
79 strength
80 stress
81 technique
82 tensile behavior
83 tensile deformation
84 tensile fracture
85 tensile properties
86 tensile strength
87 unreinforced counterpart
88 unreinforced magnesium alloy
89 values
90 viable mechanism
91 yield strength
92 schema:name Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy
93 schema:pagination 3621-3638
94 schema:productId N95acd643be9542f3b242c0b6a4241205
95 Ncb4e48b5a37f4153810c7ff9f63046d6
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000803605
97 https://doi.org/10.1007/s10853-011-6209-x
98 schema:sdDatePublished 2021-11-01T18:17
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N3a9ca9231d7743db895b5bd77f3a308c
101 schema:url https://doi.org/10.1007/s10853-011-6209-x
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N0170ba111bf04c96abf2cfb6dffc1c53 schema:issueNumber 8
106 rdf:type schema:PublicationIssue
107 N13a76ef4bbb04ab0b941aca545ec4d4a rdf:first sg:person.011617427370.37
108 rdf:rest rdf:nil
109 N3a9ca9231d7743db895b5bd77f3a308c schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N5538aafddf494b368b380a1571b6a967 schema:volumeNumber 47
112 rdf:type schema:PublicationVolume
113 N553dcb4147624a5698fff7aad9c3bdf8 rdf:first sg:person.015440524245.80
114 rdf:rest Nd218a801090343fb9df19fd520f74d54
115 N9271777c7b3a410d86d267bdb8c71b8d rdf:first sg:person.016271165327.88
116 rdf:rest N13a76ef4bbb04ab0b941aca545ec4d4a
117 N95acd643be9542f3b242c0b6a4241205 schema:name dimensions_id
118 schema:value pub.1000803605
119 rdf:type schema:PropertyValue
120 Ncb4e48b5a37f4153810c7ff9f63046d6 schema:name doi
121 schema:value 10.1007/s10853-011-6209-x
122 rdf:type schema:PropertyValue
123 Nd218a801090343fb9df19fd520f74d54 rdf:first sg:person.07617125371.09
124 rdf:rest N9271777c7b3a410d86d267bdb8c71b8d
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1312116 schema:issn 0022-2461
132 1573-4811
133 schema:name Journal of Materials Science
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.011617427370.37 schema:affiliation grid-institutes:grid.4280.e
137 schema:familyName Gupta
138 schema:givenName M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617427370.37
140 rdf:type schema:Person
141 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
142 schema:familyName Srivatsan
143 schema:givenName T. S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
145 rdf:type schema:Person
146 sg:person.016271165327.88 schema:affiliation grid-institutes:grid.4280.e
147 schema:familyName Paramsothy
148 schema:givenName M.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271165327.88
150 rdf:type schema:Person
151 sg:person.07617125371.09 schema:affiliation grid-institutes:grid.265881.0
152 schema:familyName Godbole
153 schema:givenName C.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617125371.09
155 rdf:type schema:Person
156 sg:pub.10.1007/s10853-011-5358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009102724
157 https://doi.org/10.1007/s10853-011-5358-2
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11661-000-1014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039666874
160 https://doi.org/10.1007/s11661-000-1014-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1361/105994999770346792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196117
163 https://doi.org/10.1361/105994999770346792
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.265881.0 schema:alternateName Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
166 schema:name Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.4280.e schema:alternateName Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
169 schema:name Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore, Singapore
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...