Ontology type: schema:ScholarlyArticle
2009-07-08
AUTHORSI. Kaban, J. Gröbner, W. Hoyer, R. Schmid-Fetzer
ABSTRACTWe have performed thermodynamic calculation of the phase equilibria in the ternary monotectic system Al–Bi–Si. The liquid–liquid miscibility gap in the Al–Bi–Si system extends over almost the entire concentration triangle. The thermal analysis data for (Al0.345Bi0.655)100−xSix alloys (x = 2.5, 5, 7.5, and 10 wt%) excellently agree with the calculated phase diagram. The experimental density difference of the coexisting liquid phases shows a good agreement with the density difference calculated in the approximation of ideal solution using the densities of pure elements and the compositions of L′ and L′′ from the thermodynamic calculation. The liquid–liquid interfacial tension in the (Al0.345Bi0.655)100−xSix liquid alloys increases with Si content. The experimental temperature dependence of the interfacial tension is well described by the power low in reduced temperature (TC–T) at approach of the critical temperature with the exponent μ = 1.3, which is close to the value predicted by the renormalization group theory of critical behavior. More... »
PAGES2030-2034
http://scigraph.springernature.com/pub.10.1007/s10853-009-3713-3
DOIhttp://dx.doi.org/10.1007/s10853-009-3713-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024454998
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany",
"id": "http://www.grid.ac/institutes/grid.6810.f",
"name": [
"Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany"
],
"type": "Organization"
},
"familyName": "Kaban",
"givenName": "I.",
"id": "sg:person.01277074647.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277074647.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany",
"id": "http://www.grid.ac/institutes/grid.5164.6",
"name": [
"Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany"
],
"type": "Organization"
},
"familyName": "Gr\u00f6bner",
"givenName": "J.",
"id": "sg:person.010236045765.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010236045765.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany",
"id": "http://www.grid.ac/institutes/grid.6810.f",
"name": [
"Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany"
],
"type": "Organization"
},
"familyName": "Hoyer",
"givenName": "W.",
"id": "sg:person.013170157013.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013170157013.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany",
"id": "http://www.grid.ac/institutes/grid.5164.6",
"name": [
"Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany"
],
"type": "Organization"
},
"familyName": "Schmid-Fetzer",
"givenName": "R.",
"id": "sg:person.014406406363.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406406363.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00339-004-2638-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051410318",
"https://doi.org/10.1007/s00339-004-2638-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02880522",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031293884",
"https://doi.org/10.1007/bf02880522"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0102508",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1108495277",
"https://doi.org/10.1007/bfb0102508"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/s1001-0521(06)60084-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018532452",
"https://doi.org/10.1016/s1001-0521(06)60084-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-07-08",
"datePublishedReg": "2009-07-08",
"description": "We have performed thermodynamic calculation of the phase equilibria in the ternary monotectic system Al\u2013Bi\u2013Si. The liquid\u2013liquid miscibility gap in the Al\u2013Bi\u2013Si system extends over almost the entire concentration triangle. The thermal analysis data for (Al0.345Bi0.655)100\u2212xSix alloys (x\u00a0=\u00a02.5, 5, 7.5, and 10\u00a0wt%) excellently agree with the calculated phase diagram. The experimental density difference of the coexisting liquid phases shows a good agreement with the density difference calculated in the approximation of ideal solution using the densities of pure elements and the compositions of L\u2032 and L\u2032\u2032 from the thermodynamic calculation. The liquid\u2013liquid interfacial tension in the (Al0.345Bi0.655)100\u2212xSix liquid alloys increases with Si content. The experimental temperature dependence of the interfacial tension is well described by the power low in reduced temperature (TC\u2013T) at approach of the critical temperature with the exponent \u03bc\u00a0=\u00a01.3, which is close to the value predicted by the renormalization group theory of critical behavior.",
"genre": "article",
"id": "sg:pub.10.1007/s10853-009-3713-3",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1312116",
"issn": [
"0022-2461",
"1573-4811"
],
"name": "Journal of Materials Science",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "45"
}
],
"keywords": [
"Al\u2013Bi",
"interfacial tension",
"density difference",
"liquid-liquid interfacial tension",
"thermodynamic calculations",
"liquid\u2013liquid miscibility gap",
"Si content",
"phase equilibria",
"monotectic systems",
"Si system",
"thermal analysis data",
"liquid phase",
"liquid-liquid phase equilibria",
"coexisting liquid phases",
"concentration triangle",
"good agreement",
"miscibility gap",
"reduced temperature",
"critical temperature",
"pure elements",
"experimental temperature dependence",
"temperature",
"alloy",
"temperature dependence",
"ideal solution",
"phase diagram",
"Si",
"exponent \u03bc",
"tension",
"analysis data",
"liquid",
"calculations",
"system",
"power",
"density",
"phase",
"solution",
"renormalization group theory",
"behavior",
"equilibrium",
"agreement",
"diagram",
"dependence",
"elements",
"composition",
"content",
"gap",
"approximation",
"values",
"approach",
"critical behavior",
"theory",
"triangle",
"data",
"differences",
"L\u2032\u2032",
"group theory"
],
"name": "Liquid\u2013liquid phase equilibria, density difference, and interfacial tension in the Al\u2013Bi\u2013Si monotectic system",
"pagination": "2030-2034",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024454998"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10853-009-3713-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10853-009-3713-3",
"https://app.dimensions.ai/details/publication/pub.1024454998"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_493.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10853-009-3713-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3713-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3713-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3713-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3713-3'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
21 PREDICATES
85 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10853-009-3713-3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N3b069f0fcc614f798d8187464bb4975a |
4 | ″ | schema:citation | sg:pub.10.1007/bf02880522 |
5 | ″ | ″ | sg:pub.10.1007/bfb0102508 |
6 | ″ | ″ | sg:pub.10.1007/s00339-004-2638-6 |
7 | ″ | ″ | sg:pub.10.1016/s1001-0521(06)60084-3 |
8 | ″ | schema:datePublished | 2009-07-08 |
9 | ″ | schema:datePublishedReg | 2009-07-08 |
10 | ″ | schema:description | We have performed thermodynamic calculation of the phase equilibria in the ternary monotectic system Al–Bi–Si. The liquid–liquid miscibility gap in the Al–Bi–Si system extends over almost the entire concentration triangle. The thermal analysis data for (Al0.345Bi0.655)100−xSix alloys (x = 2.5, 5, 7.5, and 10 wt%) excellently agree with the calculated phase diagram. The experimental density difference of the coexisting liquid phases shows a good agreement with the density difference calculated in the approximation of ideal solution using the densities of pure elements and the compositions of L′ and L′′ from the thermodynamic calculation. The liquid–liquid interfacial tension in the (Al0.345Bi0.655)100−xSix liquid alloys increases with Si content. The experimental temperature dependence of the interfacial tension is well described by the power low in reduced temperature (TC–T) at approach of the critical temperature with the exponent μ = 1.3, which is close to the value predicted by the renormalization group theory of critical behavior. |
11 | ″ | schema:genre | article |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N1329d71deed048b2aea7a4f0b842c4cf |
14 | ″ | ″ | N8ee23a37704947049cde21cd74cef871 |
15 | ″ | ″ | sg:journal.1312116 |
16 | ″ | schema:keywords | Al–Bi |
17 | ″ | ″ | L′′ |
18 | ″ | ″ | Si |
19 | ″ | ″ | Si content |
20 | ″ | ″ | Si system |
21 | ″ | ″ | agreement |
22 | ″ | ″ | alloy |
23 | ″ | ″ | analysis data |
24 | ″ | ″ | approach |
25 | ″ | ″ | approximation |
26 | ″ | ″ | behavior |
27 | ″ | ″ | calculations |
28 | ″ | ″ | coexisting liquid phases |
29 | ″ | ″ | composition |
30 | ″ | ″ | concentration triangle |
31 | ″ | ″ | content |
32 | ″ | ″ | critical behavior |
33 | ″ | ″ | critical temperature |
34 | ″ | ″ | data |
35 | ″ | ″ | density |
36 | ″ | ″ | density difference |
37 | ″ | ″ | dependence |
38 | ″ | ″ | diagram |
39 | ″ | ″ | differences |
40 | ″ | ″ | elements |
41 | ″ | ″ | equilibrium |
42 | ″ | ″ | experimental temperature dependence |
43 | ″ | ″ | exponent μ |
44 | ″ | ″ | gap |
45 | ″ | ″ | good agreement |
46 | ″ | ″ | group theory |
47 | ″ | ″ | ideal solution |
48 | ″ | ″ | interfacial tension |
49 | ″ | ″ | liquid |
50 | ″ | ″ | liquid phase |
51 | ″ | ″ | liquid-liquid interfacial tension |
52 | ″ | ″ | liquid-liquid phase equilibria |
53 | ″ | ″ | liquid–liquid miscibility gap |
54 | ″ | ″ | miscibility gap |
55 | ″ | ″ | monotectic systems |
56 | ″ | ″ | phase |
57 | ″ | ″ | phase diagram |
58 | ″ | ″ | phase equilibria |
59 | ″ | ″ | power |
60 | ″ | ″ | pure elements |
61 | ″ | ″ | reduced temperature |
62 | ″ | ″ | renormalization group theory |
63 | ″ | ″ | solution |
64 | ″ | ″ | system |
65 | ″ | ″ | temperature |
66 | ″ | ″ | temperature dependence |
67 | ″ | ″ | tension |
68 | ″ | ″ | theory |
69 | ″ | ″ | thermal analysis data |
70 | ″ | ″ | thermodynamic calculations |
71 | ″ | ″ | triangle |
72 | ″ | ″ | values |
73 | ″ | schema:name | Liquid–liquid phase equilibria, density difference, and interfacial tension in the Al–Bi–Si monotectic system |
74 | ″ | schema:pagination | 2030-2034 |
75 | ″ | schema:productId | N85c95e44cb7e4f54b6afb46151b83974 |
76 | ″ | ″ | Nd4781752022a45678aa2f7b841604168 |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024454998 |
78 | ″ | ″ | https://doi.org/10.1007/s10853-009-3713-3 |
79 | ″ | schema:sdDatePublished | 2022-08-04T16:57 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | Nb29693eee83547b2b7d44e01a6b496ab |
82 | ″ | schema:url | https://doi.org/10.1007/s10853-009-3713-3 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | articles |
85 | ″ | rdf:type | schema:ScholarlyArticle |
86 | N1329d71deed048b2aea7a4f0b842c4cf | schema:volumeNumber | 45 |
87 | ″ | rdf:type | schema:PublicationVolume |
88 | N3b069f0fcc614f798d8187464bb4975a | rdf:first | sg:person.01277074647.98 |
89 | ″ | rdf:rest | Nad0cce4b56d24a40a9f5144b7e16a9a0 |
90 | N73f359fbacb74ce8860e83cb3dc32d99 | rdf:first | sg:person.014406406363.53 |
91 | ″ | rdf:rest | rdf:nil |
92 | N814fa1e02abe455a987c26b69aabd87b | rdf:first | sg:person.013170157013.47 |
93 | ″ | rdf:rest | N73f359fbacb74ce8860e83cb3dc32d99 |
94 | N85c95e44cb7e4f54b6afb46151b83974 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1024454998 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N8ee23a37704947049cde21cd74cef871 | schema:issueNumber | 8 |
98 | ″ | rdf:type | schema:PublicationIssue |
99 | Nad0cce4b56d24a40a9f5144b7e16a9a0 | rdf:first | sg:person.010236045765.69 |
100 | ″ | rdf:rest | N814fa1e02abe455a987c26b69aabd87b |
101 | Nb29693eee83547b2b7d44e01a6b496ab | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nd4781752022a45678aa2f7b841604168 | schema:name | doi |
104 | ″ | schema:value | 10.1007/s10853-009-3713-3 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Materials Engineering |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1312116 | schema:issn | 0022-2461 |
113 | ″ | ″ | 1573-4811 |
114 | ″ | schema:name | Journal of Materials Science |
115 | ″ | schema:publisher | Springer Nature |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.010236045765.69 | schema:affiliation | grid-institutes:grid.5164.6 |
118 | ″ | schema:familyName | Gröbner |
119 | ″ | schema:givenName | J. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010236045765.69 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.01277074647.98 | schema:affiliation | grid-institutes:grid.6810.f |
123 | ″ | schema:familyName | Kaban |
124 | ″ | schema:givenName | I. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277074647.98 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.013170157013.47 | schema:affiliation | grid-institutes:grid.6810.f |
128 | ″ | schema:familyName | Hoyer |
129 | ″ | schema:givenName | W. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013170157013.47 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.014406406363.53 | schema:affiliation | grid-institutes:grid.5164.6 |
133 | ″ | schema:familyName | Schmid-Fetzer |
134 | ″ | schema:givenName | R. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406406363.53 |
136 | ″ | rdf:type | schema:Person |
137 | sg:pub.10.1007/bf02880522 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031293884 |
138 | ″ | ″ | https://doi.org/10.1007/bf02880522 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1007/bfb0102508 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1108495277 |
141 | ″ | ″ | https://doi.org/10.1007/bfb0102508 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1007/s00339-004-2638-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051410318 |
144 | ″ | ″ | https://doi.org/10.1007/s00339-004-2638-6 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1016/s1001-0521(06)60084-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018532452 |
147 | ″ | ″ | https://doi.org/10.1016/s1001-0521(06)60084-3 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | grid-institutes:grid.5164.6 | schema:alternateName | Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany |
150 | ″ | schema:name | Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, 38678, Clausthal-Zellerfeld, Germany |
151 | ″ | rdf:type | schema:Organization |
152 | grid-institutes:grid.6810.f | schema:alternateName | Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany |
153 | ″ | schema:name | Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany |
154 | ″ | rdf:type | schema:Organization |