Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

Lifang He, Yong Jia, Fanli Meng, Minqiang Li, Jinhuai Liu

ABSTRACT

An effort has been made to develop a new kind of SnO2–CuO gas sensor which could detect an extremely small amount of H2S gas at relatively low working temperature. The sensor nanomaterials were prepared from SnO2 hollow spheres (synthesized by employing carbon microspheres as temples) and Cu precursor by dipping method. The composition and structural characteristics of the as-prepared CuO-doped SnO2 hollow spheres were studied by X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Gas-sensing properties of CuO-doped SnO2 hollow sphere were also investigated. It was found that the sensor showed good selectivity and high sensitivity to H2S gas. A ppb level detection limit was obtained with the sensor at the relatively low temperature of 35 °C. Such good performances are probably attributed to the hollow sphere nanostructures. Our results imply that materials with hollow sphere nanostructures are promising candidates for high-performance gas sensors. More... »

PAGES

4326-4333

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10853-009-3645-y

DOI

http://dx.doi.org/10.1007/s10853-009-3645-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036579693


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People\u2019s Republic of China", 
            "Department of Chemistry, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Lifang", 
        "id": "sg:person.015625622363.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625622363.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.252251.3", 
          "name": [
            "Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People\u2019s Republic of China", 
            "Department of Pharmacy, Anhui University of Traditional Chinese Medicine, 230031, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Yong", 
        "id": "sg:person.013460372627.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460372627.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People\u2019s Republic of China", 
            "Department of Chemistry, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Fanli", 
        "id": "sg:person.01322230626.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322230626.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Intelligent Machines", 
          "id": "https://www.grid.ac/institutes/grid.467850.8", 
          "name": [
            "Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Minqiang", 
        "id": "sg:person.012521020335.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521020335.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People\u2019s Republic of China", 
            "Department of Chemistry, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinhuai", 
        "id": "sg:person.01357566760.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357566760.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tsf.2005.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002539282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2005.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003193698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/36/19/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007244198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(99)00358-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009229586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200352386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010911879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.200700927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010948041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022399755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2827-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025594576", 
          "https://doi.org/10.1007/s10853-008-2827-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2827-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025594576", 
          "https://doi.org/10.1007/s10853-008-2827-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0254-0584(02)00467-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0254-0584(02)00467-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5107(02)00501-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028114146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5107(02)00501-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028114146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4005(94)01535-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032940768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/19/24/245611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038518196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2005.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039672049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2006.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040871811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2008.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041522656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic049522w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044046705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic049522w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044046705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2006.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045363964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2008.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046021519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2004.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046852437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2931-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047350499", 
          "https://doi.org/10.1007/s10853-008-2931-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2931-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047350499", 
          "https://doi.org/10.1007/s10853-008-2931-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4005(92)80216-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047376682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(01)00873-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052223351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0279601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0279601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp712034w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp712034w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056106458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp8037818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp8037818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1490154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057711972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1584071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1646760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057729719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "An effort has been made to develop a new kind of SnO2\u2013CuO gas sensor which could detect an extremely small amount of H2S gas at relatively low working temperature. The sensor nanomaterials were prepared from SnO2 hollow spheres (synthesized by employing carbon microspheres as temples) and Cu precursor by dipping method. The composition and structural characteristics of the as-prepared CuO-doped SnO2 hollow spheres were studied by X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Gas-sensing properties of CuO-doped SnO2 hollow sphere were also investigated. It was found that the sensor showed good selectivity and high sensitivity to H2S gas. A ppb level detection limit was obtained with the sensor at the relatively low temperature of 35 \u00b0C. Such good performances are probably attributed to the hollow sphere nanostructures. Our results imply that materials with hollow sphere nanostructures are promising candidates for high-performance gas sensors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10853-009-3645-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4962123", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4988449", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "16", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing", 
    "pagination": "4326-4333", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10853-009-3645-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae404c796ec243e7b6735a5c960dc37e6173a704b53aa8601ac5191a9d5f1ce7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036579693"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10853-009-3645-y", 
      "https://app.dimensions.ai/details/publication/pub.1036579693"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56173_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10853-009-3645-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3645-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3645-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3645-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-009-3645-y'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10853-009-3645-y schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Nf3fe0c708b6c4514ad424d7fc4431a6c
4 schema:citation sg:pub.10.1007/s10853-008-2827-3
5 sg:pub.10.1007/s10853-008-2931-4
6 https://doi.org/10.1002/anie.200352386
7 https://doi.org/10.1002/chem.200700927
8 https://doi.org/10.1016/0925-4005(92)80216-k
9 https://doi.org/10.1016/0925-4005(94)01535-p
10 https://doi.org/10.1016/j.micromeso.2008.09.035
11 https://doi.org/10.1016/j.snb.2004.07.001
12 https://doi.org/10.1016/j.snb.2004.07.024
13 https://doi.org/10.1016/j.snb.2005.01.037
14 https://doi.org/10.1016/j.snb.2005.11.031
15 https://doi.org/10.1016/j.snb.2006.02.022
16 https://doi.org/10.1016/j.snb.2006.03.004
17 https://doi.org/10.1016/j.snb.2008.04.007
18 https://doi.org/10.1016/j.tsf.2005.11.018
19 https://doi.org/10.1016/s0254-0584(02)00467-4
20 https://doi.org/10.1016/s0921-5107(02)00501-9
21 https://doi.org/10.1016/s0925-4005(01)00873-5
22 https://doi.org/10.1016/s0925-4005(99)00358-5
23 https://doi.org/10.1021/ic049522w
24 https://doi.org/10.1021/ja0279601
25 https://doi.org/10.1021/jp712034w
26 https://doi.org/10.1021/jp8037818
27 https://doi.org/10.1063/1.111326
28 https://doi.org/10.1063/1.1490154
29 https://doi.org/10.1063/1.1584071
30 https://doi.org/10.1063/1.1646760
31 https://doi.org/10.1088/0022-3727/36/19/010
32 https://doi.org/10.1088/0957-4484/19/24/245611
33 schema:datePublished 2009-08
34 schema:datePublishedReg 2009-08-01
35 schema:description An effort has been made to develop a new kind of SnO2–CuO gas sensor which could detect an extremely small amount of H2S gas at relatively low working temperature. The sensor nanomaterials were prepared from SnO2 hollow spheres (synthesized by employing carbon microspheres as temples) and Cu precursor by dipping method. The composition and structural characteristics of the as-prepared CuO-doped SnO2 hollow spheres were studied by X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Gas-sensing properties of CuO-doped SnO2 hollow sphere were also investigated. It was found that the sensor showed good selectivity and high sensitivity to H2S gas. A ppb level detection limit was obtained with the sensor at the relatively low temperature of 35 °C. Such good performances are probably attributed to the hollow sphere nanostructures. Our results imply that materials with hollow sphere nanostructures are promising candidates for high-performance gas sensors.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nc6363772e7e4410e8ccbf067981fab1b
40 Nd067d9d0abc04a9eb4c1132bbcb9c759
41 sg:journal.1312116
42 schema:name Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing
43 schema:pagination 4326-4333
44 schema:productId N081cc8a1f0b44245bbaf21096145cd36
45 N373c553c617949f8ab11de025ac2c479
46 N6fed0f80503e4d6c91eaf7f20c8583d8
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036579693
48 https://doi.org/10.1007/s10853-009-3645-y
49 schema:sdDatePublished 2019-04-15T09:17
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Na9fd85c2cd1c4a39a6d7a5044f0b6845
52 schema:url https://link.springer.com/10.1007%2Fs10853-009-3645-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N081cc8a1f0b44245bbaf21096145cd36 schema:name readcube_id
57 schema:value ae404c796ec243e7b6735a5c960dc37e6173a704b53aa8601ac5191a9d5f1ce7
58 rdf:type schema:PropertyValue
59 N357c1d9d3b29462aa1758f11cdcdf5ae rdf:first sg:person.013460372627.04
60 rdf:rest Ne60cf939502b42ed886911987329cf74
61 N373c553c617949f8ab11de025ac2c479 schema:name dimensions_id
62 schema:value pub.1036579693
63 rdf:type schema:PropertyValue
64 N661184786be34901b3f50637c60093f7 rdf:first sg:person.01357566760.43
65 rdf:rest rdf:nil
66 N6fed0f80503e4d6c91eaf7f20c8583d8 schema:name doi
67 schema:value 10.1007/s10853-009-3645-y
68 rdf:type schema:PropertyValue
69 Na9fd85c2cd1c4a39a6d7a5044f0b6845 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nc6363772e7e4410e8ccbf067981fab1b schema:issueNumber 16
72 rdf:type schema:PublicationIssue
73 Nd067d9d0abc04a9eb4c1132bbcb9c759 schema:volumeNumber 44
74 rdf:type schema:PublicationVolume
75 Ne60cf939502b42ed886911987329cf74 rdf:first sg:person.01322230626.15
76 rdf:rest Ne843c3003b0c4a769594c0255e16d6e1
77 Ne843c3003b0c4a769594c0255e16d6e1 rdf:first sg:person.012521020335.63
78 rdf:rest N661184786be34901b3f50637c60093f7
79 Nf3fe0c708b6c4514ad424d7fc4431a6c rdf:first sg:person.015625622363.16
80 rdf:rest N357c1d9d3b29462aa1758f11cdcdf5ae
81 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
82 schema:name Technology
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
85 schema:name Nanotechnology
86 rdf:type schema:DefinedTerm
87 sg:grant.4962123 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-009-3645-y
88 rdf:type schema:MonetaryGrant
89 sg:grant.4988449 http://pending.schema.org/fundedItem sg:pub.10.1007/s10853-009-3645-y
90 rdf:type schema:MonetaryGrant
91 sg:journal.1312116 schema:issn 0022-2461
92 1573-4811
93 schema:name Journal of Materials Science
94 rdf:type schema:Periodical
95 sg:person.012521020335.63 schema:affiliation https://www.grid.ac/institutes/grid.467850.8
96 schema:familyName Li
97 schema:givenName Minqiang
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012521020335.63
99 rdf:type schema:Person
100 sg:person.01322230626.15 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
101 schema:familyName Meng
102 schema:givenName Fanli
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322230626.15
104 rdf:type schema:Person
105 sg:person.013460372627.04 schema:affiliation https://www.grid.ac/institutes/grid.252251.3
106 schema:familyName Jia
107 schema:givenName Yong
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460372627.04
109 rdf:type schema:Person
110 sg:person.01357566760.43 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
111 schema:familyName Liu
112 schema:givenName Jinhuai
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357566760.43
114 rdf:type schema:Person
115 sg:person.015625622363.16 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
116 schema:familyName He
117 schema:givenName Lifang
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625622363.16
119 rdf:type schema:Person
120 sg:pub.10.1007/s10853-008-2827-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025594576
121 https://doi.org/10.1007/s10853-008-2827-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10853-008-2931-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047350499
124 https://doi.org/10.1007/s10853-008-2931-4
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/anie.200352386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010911879
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/chem.200700927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948041
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0925-4005(92)80216-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1047376682
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0925-4005(94)01535-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1032940768
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.micromeso.2008.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046021519
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.snb.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022399755
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.snb.2004.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046852437
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.snb.2005.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039672049
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.snb.2005.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003193698
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.snb.2006.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040871811
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.snb.2006.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045363964
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.snb.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041522656
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.tsf.2005.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002539282
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0254-0584(02)00467-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026870762
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0921-5107(02)00501-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028114146
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0925-4005(01)00873-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052223351
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0925-4005(99)00358-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009229586
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ic049522w schema:sameAs https://app.dimensions.ai/details/publication/pub.1044046705
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ja0279601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055831527
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/jp712034w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056106458
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/jp8037818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056108636
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.111326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658885
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.1490154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711972
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.1584071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722901
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.1646760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729719
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0022-3727/36/19/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007244198
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0957-4484/19/24/245611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038518196
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.252251.3 schema:alternateName Anhui University of Traditional Chinese Medicine
181 schema:name Department of Pharmacy, Anhui University of Traditional Chinese Medicine, 230031, Hefei, People’s Republic of China
182 Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People’s Republic of China
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.467850.8 schema:alternateName Institute of Intelligent Machines
185 schema:name Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People’s Republic of China
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
188 schema:name Department of Chemistry, University of Science and Technology of China, 230026, Hefei, People’s Republic of China
189 Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, People’s Republic of China
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...