The dynamic shear response of the Zr base bulk metallic glass around the calorimetric glass transition temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-07-08

AUTHORS

Q. Wang, J. M. Pelletier, H. Xu, L. Xia, X. H. Tan, Y. D. Dong

ABSTRACT

The dynamic shear response of a bulk Zr55Cu25Ni5Al10Nb5 metallic glass has been investigated in the vicinity of calorimetric glass transition temperature, Tg. Similar to other glass formers, the Zr base bulk metallic glass exhibits typical features of the dynamic glass transition. The intermediate fragility index, m, indicates that the Zr base alloy belongs to the category of relatively strong glass formers in the general classification scheme. On the other hand, the time temperature equivalence principle is found to be applicable for constructing the master curve of dynamic shear modulus as well as shear viscosity over the temperature range studied. Theses master functions can be fitted with phenomenological models, such as generalized Maxwell model, or a Kohlrausch-Williams-Watts (KWW) relation, and therefore reflect a broad distribution of local structural relaxation time for dynamic glass transition in the Zr base bulk metallic glass. More... »

PAGES

4795-4799

References to SciGraph publications

  • 1998-09. Shear modulus and compliance in the range of the dynamic glass transition for metallic glasses in THE EUROPEAN PHYSICAL JOURNAL B
  • 1995-03. Structural relaxation and viscous flow in amorphous ZrAlCu in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10853-005-2016-6

    DOI

    http://dx.doi.org/10.1007/s10853-005-2016-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043994115


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Institute of Materials, Shanghai University, 200072, Shanghai, China", 
                "School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Q.", 
            "id": "sg:person.010145465721.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145465721.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GEMPPM, Bat. B. Pascal, INSA, 69621, Villeurbanne Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "GEMPPM, Bat. B. Pascal, INSA, 69621, Villeurbanne Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pelletier", 
            "givenName": "J. M.", 
            "id": "sg:person.0711612715.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711612715.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Shanghai University, 200072, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Institute of Materials, Shanghai University, 200072, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "H.", 
            "id": "sg:person.01262277176.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262277176.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Shanghai University, 200072, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Institute of Materials, Shanghai University, 200072, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "L.", 
            "id": "sg:person.014555610455.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014555610455.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Shanghai University, 200072, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Institute of Materials, Shanghai University, 200072, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "X. H.", 
            "id": "sg:person.010251346215.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251346215.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Materials, Shanghai University, 200072, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Institute of Materials, Shanghai University, 200072, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Y. D.", 
            "id": "sg:person.015437354142.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437354142.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s100510050411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020845970", 
              "https://doi.org/10.1007/s100510050411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002570050053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000135300", 
              "https://doi.org/10.1007/s002570050053"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-07-08", 
        "datePublishedReg": "2005-07-08", 
        "description": "The dynamic shear response of a bulk Zr55Cu25Ni5Al10Nb5 metallic glass has been investigated in the vicinity of calorimetric glass transition temperature, Tg. Similar to other glass formers, the Zr base bulk metallic glass exhibits typical features of the dynamic glass transition. The intermediate fragility index, m, indicates that the Zr base alloy belongs to the category of relatively strong glass formers in the general classification scheme. On the other hand, the time temperature equivalence principle is found to be applicable for constructing the master curve of dynamic shear modulus as well as shear viscosity over the temperature range studied. Theses master functions can be fitted with phenomenological models, such as generalized Maxwell model, or a Kohlrausch-Williams-Watts (KWW) relation, and therefore reflect a broad distribution of local structural relaxation time for dynamic glass transition in the Zr base bulk metallic glass.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10853-005-2016-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4803"
            ], 
            "name": "Journal of Materials Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "18", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "Zr-base bulk metallic glass", 
          "base bulk metallic glass", 
          "bulk metallic glass", 
          "dynamic shear response", 
          "metallic glasses", 
          "glass transition temperature", 
          "shear response", 
          "calorimetric glass transition temperature", 
          "Zr-base alloys", 
          "time-temperature equivalence principle", 
          "dynamic shear modulus", 
          "dynamic glass transition", 
          "transition temperature", 
          "base alloy", 
          "glass transition", 
          "shear modulus", 
          "Maxwell model", 
          "Watts relation", 
          "master curve", 
          "temperature range", 
          "shear viscosity", 
          "glass formers", 
          "glass", 
          "phenomenological model", 
          "structural relaxation time", 
          "temperature", 
          "Kohlrausch-Williams", 
          "alloy", 
          "strong glass formers", 
          "modulus", 
          "relaxation time", 
          "viscosity", 
          "equivalence principle", 
          "fragility index", 
          "model", 
          "vicinity", 
          "scheme", 
          "range", 
          "Tg", 
          "transition", 
          "formers", 
          "broad distribution", 
          "curves", 
          "distribution", 
          "general classification scheme", 
          "typical features", 
          "principles", 
          "time", 
          "features", 
          "master function", 
          "response", 
          "classification scheme", 
          "hand", 
          "function", 
          "index", 
          "relation", 
          "categories"
        ], 
        "name": "The dynamic shear response of the Zr base bulk metallic glass around the calorimetric glass transition temperature", 
        "pagination": "4795-4799", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043994115"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10853-005-2016-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10853-005-2016-6", 
          "https://app.dimensions.ai/details/publication/pub.1043994115"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_403.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10853-005-2016-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10853-005-2016-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10853-005-2016-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10853-005-2016-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10853-005-2016-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      83 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10853-005-2016-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N5f95fd20c38c4275a94eb3d76cbe0c2a
    4 schema:citation sg:pub.10.1007/s002570050053
    5 sg:pub.10.1007/s100510050411
    6 schema:datePublished 2005-07-08
    7 schema:datePublishedReg 2005-07-08
    8 schema:description The dynamic shear response of a bulk Zr55Cu25Ni5Al10Nb5 metallic glass has been investigated in the vicinity of calorimetric glass transition temperature, Tg. Similar to other glass formers, the Zr base bulk metallic glass exhibits typical features of the dynamic glass transition. The intermediate fragility index, m, indicates that the Zr base alloy belongs to the category of relatively strong glass formers in the general classification scheme. On the other hand, the time temperature equivalence principle is found to be applicable for constructing the master curve of dynamic shear modulus as well as shear viscosity over the temperature range studied. Theses master functions can be fitted with phenomenological models, such as generalized Maxwell model, or a Kohlrausch-Williams-Watts (KWW) relation, and therefore reflect a broad distribution of local structural relaxation time for dynamic glass transition in the Zr base bulk metallic glass.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N4f4d4788b0ad4c1e9c2d8fa7edb54d09
    12 Ne0e205549bf14ebeb5dd552f503d8a7a
    13 sg:journal.1312116
    14 schema:keywords Kohlrausch-Williams
    15 Maxwell model
    16 Tg
    17 Watts relation
    18 Zr-base alloys
    19 Zr-base bulk metallic glass
    20 alloy
    21 base alloy
    22 base bulk metallic glass
    23 broad distribution
    24 bulk metallic glass
    25 calorimetric glass transition temperature
    26 categories
    27 classification scheme
    28 curves
    29 distribution
    30 dynamic glass transition
    31 dynamic shear modulus
    32 dynamic shear response
    33 equivalence principle
    34 features
    35 formers
    36 fragility index
    37 function
    38 general classification scheme
    39 glass
    40 glass formers
    41 glass transition
    42 glass transition temperature
    43 hand
    44 index
    45 master curve
    46 master function
    47 metallic glasses
    48 model
    49 modulus
    50 phenomenological model
    51 principles
    52 range
    53 relation
    54 relaxation time
    55 response
    56 scheme
    57 shear modulus
    58 shear response
    59 shear viscosity
    60 strong glass formers
    61 structural relaxation time
    62 temperature
    63 temperature range
    64 time
    65 time-temperature equivalence principle
    66 transition
    67 transition temperature
    68 typical features
    69 vicinity
    70 viscosity
    71 schema:name The dynamic shear response of the Zr base bulk metallic glass around the calorimetric glass transition temperature
    72 schema:pagination 4795-4799
    73 schema:productId N853f4764edf04e03b06266d5712463b6
    74 Nd6cc16a8ee6e4d5d8d48771eaa749ab1
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043994115
    76 https://doi.org/10.1007/s10853-005-2016-6
    77 schema:sdDatePublished 2022-12-01T06:24
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Ncebfd0c536634df88f51ce1938142434
    80 schema:url https://doi.org/10.1007/s10853-005-2016-6
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N03712a983e7245e986494b48f0b98675 rdf:first sg:person.01262277176.25
    85 rdf:rest N5c7fb5a03225484ca1bb86988e689803
    86 N4f4d4788b0ad4c1e9c2d8fa7edb54d09 schema:volumeNumber 40
    87 rdf:type schema:PublicationVolume
    88 N5c7fb5a03225484ca1bb86988e689803 rdf:first sg:person.014555610455.91
    89 rdf:rest N75312e730b804092ba769ce8dcca22e7
    90 N5f95fd20c38c4275a94eb3d76cbe0c2a rdf:first sg:person.010145465721.07
    91 rdf:rest N602650832fde4932b84404ac2e69f078
    92 N602650832fde4932b84404ac2e69f078 rdf:first sg:person.0711612715.10
    93 rdf:rest N03712a983e7245e986494b48f0b98675
    94 N73cb8583169f400bb7638144c755eb89 rdf:first sg:person.015437354142.44
    95 rdf:rest rdf:nil
    96 N75312e730b804092ba769ce8dcca22e7 rdf:first sg:person.010251346215.95
    97 rdf:rest N73cb8583169f400bb7638144c755eb89
    98 N853f4764edf04e03b06266d5712463b6 schema:name dimensions_id
    99 schema:value pub.1043994115
    100 rdf:type schema:PropertyValue
    101 Ncebfd0c536634df88f51ce1938142434 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Nd6cc16a8ee6e4d5d8d48771eaa749ab1 schema:name doi
    104 schema:value 10.1007/s10853-005-2016-6
    105 rdf:type schema:PropertyValue
    106 Ne0e205549bf14ebeb5dd552f503d8a7a schema:issueNumber 18
    107 rdf:type schema:PublicationIssue
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Materials Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1312116 schema:issn 0022-2461
    115 1573-4803
    116 schema:name Journal of Materials Science
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.010145465721.07 schema:affiliation grid-institutes:grid.16821.3c
    120 schema:familyName Wang
    121 schema:givenName Q.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145465721.07
    123 rdf:type schema:Person
    124 sg:person.010251346215.95 schema:affiliation grid-institutes:grid.39436.3b
    125 schema:familyName Tan
    126 schema:givenName X. H.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251346215.95
    128 rdf:type schema:Person
    129 sg:person.01262277176.25 schema:affiliation grid-institutes:grid.39436.3b
    130 schema:familyName Xu
    131 schema:givenName H.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262277176.25
    133 rdf:type schema:Person
    134 sg:person.014555610455.91 schema:affiliation grid-institutes:grid.39436.3b
    135 schema:familyName Xia
    136 schema:givenName L.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014555610455.91
    138 rdf:type schema:Person
    139 sg:person.015437354142.44 schema:affiliation grid-institutes:grid.39436.3b
    140 schema:familyName Dong
    141 schema:givenName Y. D.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437354142.44
    143 rdf:type schema:Person
    144 sg:person.0711612715.10 schema:affiliation grid-institutes:None
    145 schema:familyName Pelletier
    146 schema:givenName J. M.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711612715.10
    148 rdf:type schema:Person
    149 sg:pub.10.1007/s002570050053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000135300
    150 https://doi.org/10.1007/s002570050053
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s100510050411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020845970
    153 https://doi.org/10.1007/s100510050411
    154 rdf:type schema:CreativeWork
    155 grid-institutes:None schema:alternateName GEMPPM, Bat. B. Pascal, INSA, 69621, Villeurbanne Cedex, France
    156 schema:name GEMPPM, Bat. B. Pascal, INSA, 69621, Villeurbanne Cedex, France
    157 rdf:type schema:Organization
    158 grid-institutes:grid.16821.3c schema:alternateName School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
    159 schema:name Institute of Materials, Shanghai University, 200072, Shanghai, China
    160 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
    161 rdf:type schema:Organization
    162 grid-institutes:grid.39436.3b schema:alternateName Institute of Materials, Shanghai University, 200072, Shanghai, China
    163 schema:name Institute of Materials, Shanghai University, 200072, Shanghai, China
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...