Rates of Minimization of Error Functionals over Boolean Variable-Basis Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-12

AUTHORS

P. C. Kainen, V. K??rkov??, M. Sanguineti

ABSTRACT

Approximate solution of optimization tasks that can be formalized as minimization of error functionals over admissible sets computable by variable-basis functions (i.e., linear combinations of n-tuples of functions from a given basis) is investigated. Estimates of rates of decrease of infima of such functionals over sets formed by linear combinations of increasing number n of elements of the bases are derived, for the case in which such admissible sets consist of Boolean functions. The results are applied to target sets of various types (e.g., sets containing functions representable either by linear combinations of a ???small??? number of generalized parities or by ???small??? decision trees and sets satisfying smoothness conditions defined in terms of Sobolev norms). More... »

PAGES

355-368

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10852-005-1625-z

DOI

http://dx.doi.org/10.1007/s10852-005-1625-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003613650


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Mathematics, Georgetown University, 20057-1233, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kainen", 
        "givenName": "P. C.", 
        "id": "sg:person.013607306243.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.448092.3", 
          "name": [
            "Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vod??renskou v?????? 2, 182 07, Prague 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K??rkov??", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Genoa", 
          "id": "https://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Department of Communications, Computer, and System Sciences (DIST), University of Genoa, Via Opera Pia 13, 16145, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanguineti", 
        "givenName": "M.", 
        "id": "sg:person.0677746435.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677746435.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02678464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007387870", 
          "https://doi.org/10.1007/bf02678464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02678464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007387870", 
          "https://doi.org/10.1007/bf02678464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1996-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720603", 
          "https://doi.org/10.1007/978-1-4612-1996-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1996-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720603", 
          "https://doi.org/10.1007/978-1-4612-1996-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(98)00039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015076901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(97)00028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018224020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jco.2004.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020017783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013662124879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021881028", 
          "https://doi.org/10.1023/a:1013662124879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010916406274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028487750", 
          "https://doi.org/10.1023/a:1010916406274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-01-00923-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035569394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80131-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035569394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jath.1997.3217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036473697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-41583-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039028295", 
          "https://doi.org/10.1007/978-3-662-41583-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-41583-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039028295", 
          "https://doi.org/10.1007/978-3-662-41583-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcss.1997.1506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039870909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047401426", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0084195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401426", 
          "https://doi.org/10.1007/bfb0084195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0084195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401426", 
          "https://doi.org/10.1007/bfb0084195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.945285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.971754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.387616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0222080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623402401233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623403426507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219530503000089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062998819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.383.0277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "Approximate solution of optimization tasks that can be formalized as minimization of error functionals over admissible sets computable by variable-basis functions (i.e., linear combinations of n-tuples of functions from a given basis) is investigated. Estimates of rates of decrease of infima of such functionals over sets formed by linear combinations of increasing number n of elements of the bases are derived, for the case in which such admissible sets consist of Boolean functions. The results are applied to target sets of various types (e.g., sets containing functions representable either by linear combinations of a ???small??? number of generalized parities or by ???small??? decision trees and sets satisfying smoothness conditions defined in terms of Sobolev norms).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10852-005-1625-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1142974", 
        "issn": [
          "1570-1166", 
          "1572-9214"
        ], 
        "name": "Journal of Mathematical Modelling and Algorithms", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Rates of Minimization of Error Functionals over Boolean Variable-Basis Functions", 
    "pagination": "355-368", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1136e2f02b054285c9c65b3c5d25cb652b4e6fd00cd8be4a48c05b00d527d8aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10852-005-1625-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003613650"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10852-005-1625-z", 
      "https://app.dimensions.ai/details/publication/pub.1003613650"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10852-005-1625-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10852-005-1625-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10852-005-1625-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10852-005-1625-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10852-005-1625-z'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10852-005-1625-z schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nbdfc2544735943fb969d101ef5592d44
4 schema:citation sg:pub.10.1007/978-1-4612-1996-5_16
5 sg:pub.10.1007/978-3-662-41583-2
6 sg:pub.10.1007/bf02678464
7 sg:pub.10.1007/bfb0084195
8 sg:pub.10.1023/a:1010916406274
9 sg:pub.10.1023/a:1013662124879
10 https://app.dimensions.ai/details/publication/pub.1047401426
11 https://doi.org/10.1006/jath.1997.3217
12 https://doi.org/10.1006/jcss.1997.1506
13 https://doi.org/10.1016/j.jco.2004.11.002
14 https://doi.org/10.1016/s0893-6080(05)80131-5
15 https://doi.org/10.1016/s0893-6080(97)00028-2
16 https://doi.org/10.1016/s0893-6080(98)00039-2
17 https://doi.org/10.1090/s0273-0979-01-00923-5
18 https://doi.org/10.1109/18.256500
19 https://doi.org/10.1109/18.945285
20 https://doi.org/10.1109/18.971754
21 https://doi.org/10.1109/37.387616
22 https://doi.org/10.1137/0222080
23 https://doi.org/10.1137/s1052623402401233
24 https://doi.org/10.1137/s1052623403426507
25 https://doi.org/10.1142/s0219530503000089
26 https://doi.org/10.1147/rd.383.0277
27 https://doi.org/10.1214/aos/1176348546
28 schema:datePublished 2005-12
29 schema:datePublishedReg 2005-12-01
30 schema:description Approximate solution of optimization tasks that can be formalized as minimization of error functionals over admissible sets computable by variable-basis functions (i.e., linear combinations of n-tuples of functions from a given basis) is investigated. Estimates of rates of decrease of infima of such functionals over sets formed by linear combinations of increasing number n of elements of the bases are derived, for the case in which such admissible sets consist of Boolean functions. The results are applied to target sets of various types (e.g., sets containing functions representable either by linear combinations of a ???small??? number of generalized parities or by ???small??? decision trees and sets satisfying smoothness conditions defined in terms of Sobolev norms).
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N274a8d7a8a9348b0919f191d521e6658
35 N97a565dde347414ea1c534ad7575cf14
36 sg:journal.1142974
37 schema:name Rates of Minimization of Error Functionals over Boolean Variable-Basis Functions
38 schema:pagination 355-368
39 schema:productId N46de86232c924e25b39e8d6c10f67885
40 Naf7d55daa40643ee8f6267ad5f1c1db5
41 Nd4a16a53e11c45e2a81b011a654d23d4
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003613650
43 https://doi.org/10.1007/s10852-005-1625-z
44 schema:sdDatePublished 2019-04-11T12:25
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N0049520e2202477aa2be5b6b349032f6
47 schema:url http://link.springer.com/10.1007/s10852-005-1625-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0049520e2202477aa2be5b6b349032f6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N274a8d7a8a9348b0919f191d521e6658 schema:volumeNumber 4
54 rdf:type schema:PublicationVolume
55 N46de86232c924e25b39e8d6c10f67885 schema:name readcube_id
56 schema:value 1136e2f02b054285c9c65b3c5d25cb652b4e6fd00cd8be4a48c05b00d527d8aa
57 rdf:type schema:PropertyValue
58 N97a565dde347414ea1c534ad7575cf14 schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 Naf7d55daa40643ee8f6267ad5f1c1db5 schema:name doi
61 schema:value 10.1007/s10852-005-1625-z
62 rdf:type schema:PropertyValue
63 Nb9bdd8badcb6454abfc9b4cee5852a61 rdf:first sg:person.0677746435.25
64 rdf:rest rdf:nil
65 Nbdfc2544735943fb969d101ef5592d44 rdf:first sg:person.013607306243.38
66 rdf:rest Nf8147326b0244132be01b07214df844b
67 Nd4a16a53e11c45e2a81b011a654d23d4 schema:name dimensions_id
68 schema:value pub.1003613650
69 rdf:type schema:PropertyValue
70 Ne69e3756fcd1438ab705f096d975f374 schema:affiliation https://www.grid.ac/institutes/grid.448092.3
71 schema:familyName K??rkov??
72 schema:givenName V.
73 rdf:type schema:Person
74 Nf8147326b0244132be01b07214df844b rdf:first Ne69e3756fcd1438ab705f096d975f374
75 rdf:rest Nb9bdd8badcb6454abfc9b4cee5852a61
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1142974 schema:issn 1570-1166
83 1572-9214
84 schema:name Journal of Mathematical Modelling and Algorithms
85 rdf:type schema:Periodical
86 sg:person.013607306243.38 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
87 schema:familyName Kainen
88 schema:givenName P. C.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38
90 rdf:type schema:Person
91 sg:person.0677746435.25 schema:affiliation https://www.grid.ac/institutes/grid.5606.5
92 schema:familyName Sanguineti
93 schema:givenName M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677746435.25
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4612-1996-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008720603
97 https://doi.org/10.1007/978-1-4612-1996-5_16
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-662-41583-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039028295
100 https://doi.org/10.1007/978-3-662-41583-2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02678464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387870
103 https://doi.org/10.1007/bf02678464
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bfb0084195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047401426
106 https://doi.org/10.1007/bfb0084195
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1010916406274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028487750
109 https://doi.org/10.1023/a:1010916406274
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1013662124879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021881028
112 https://doi.org/10.1023/a:1013662124879
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1047401426 schema:CreativeWork
115 https://doi.org/10.1006/jath.1997.3217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036473697
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1006/jcss.1997.1506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039870909
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jco.2004.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020017783
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0893-6080(05)80131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035569394
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0893-6080(97)00028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018224020
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0893-6080(98)00039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015076901
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1090/s0273-0979-01-00923-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707307
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/18.256500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098999
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/18.945285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101775
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/18.971754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101835
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/37.387616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163101
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/0222080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842483
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/s1052623402401233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883301
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/s1052623403426507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883358
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1142/s0219530503000089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998819
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1147/rd.383.0277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182064
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1214/aos/1176348546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408657
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.213910.8 schema:alternateName Georgetown University
150 schema:name Department of Mathematics, Georgetown University, 20057-1233, Washington, DC, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.448092.3 schema:alternateName Institute of Computer Science
153 schema:name Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vod??renskou v?????? 2, 182 07, Prague 8, Czech Republic
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.5606.5 schema:alternateName University of Genoa
156 schema:name Department of Communications, Computer, and System Sciences (DIST), University of Genoa, Via Opera Pia 13, 16145, Genova, Italy
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...