An Inverse Source Problem Connected with Thermoacoustic Imaging in Multi-layer Planar Medium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-20

AUTHORS

Banu Uzun, Hazel Yücel

ABSTRACT

We derived analytical forward and inverse solution of thermoacoustic wave equation for nonhomogeneous medium. We modelled the nonhomogeneous medium as a multi-layer planar medium and defined initial conditions, continuity conditions on the layer boundaries and radiation conditions at infinity assuming the source distribution existing in all layers. These solutions of thermoacoustic wave equation are based on the method of Green’s functions for layered planar media. For qualitative testing and comparison of the point-spread functions associated with the homogeneous and layered solutions, we performed numerical simulations. Our simulation results showed that the conventional inverse solution based on homogeneous medium assumption, as expected, produced incorrect locations of point sources, whereas our inverse solution involving the multi-layer planar medium produced point sources at the correct source locations. Also, we examined whether the performance of our layered inverse solution is sensitive to medium parameters used as priority information in the measured data. Our inverse solutions based on multi-layer planar media are applicable for cross-sectional two-dimensional imaging of abdominal structure and the organs such as breast and skin. More... »

PAGES

1-11

References to SciGraph publications

  • 1991-11. Numerical algorithm for dielectric-permittivity microwave imaging of inhomogeneous biological bodies in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2011. Mathematics of Photoacoustic and Thermoacoustic Tomography in HANDBOOK OF MATHEMATICAL METHODS IN IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10851-019-00875-2

    DOI

    http://dx.doi.org/10.1007/s10851-019-00875-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112229136


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "I\u015f\u0131k University", 
              "id": "https://www.grid.ac/institutes/grid.58192.37", 
              "name": [
                "Mathematics Department, I\u015f\u0131k University, 34980, \u015eile, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uzun", 
            "givenName": "Banu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "I\u015f\u0131k University", 
              "id": "https://www.grid.ac/institutes/grid.58192.37", 
              "name": [
                "Mathematics Department, I\u015f\u0131k University, 34980, \u015eile, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Y\u00fccel", 
            "givenName": "Hazel", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/1.jbo.19.1.017007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000453755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02446100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005877891", 
              "https://doi.org/10.1007/bf02446100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02446100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005877891", 
              "https://doi.org/10.1007/bf02446100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0141-5425(91)90126-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009233745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.216.1.r00jl30279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011962542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0360-3016(80)90223-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013813378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2195024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013961838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/23/5/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014677679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/23/6/s04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018212356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmaa.1995.1448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019036544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsfs.2011.0028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021692161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-92920-0_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025932570", 
              "https://doi.org/10.1007/978-0-387-92920-0_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-92920-0_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025932570", 
              "https://doi.org/10.1007/978-0-387-92920-0_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.386316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025936297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.597312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029823567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.280213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031117226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/24/5/055006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041365762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.356829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049363184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/25/7/075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050079621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/25/7/075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050079621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/41/11/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059022904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/54/19/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059027832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/54/19/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059027832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.72.016706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060733281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.72.016706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060733281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.72.016706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060733281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/22.654920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061125771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2002.801172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2009.2032358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/120881270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062869574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josaa.28.001114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065163104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081774749", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/3435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098868510"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-20", 
        "datePublishedReg": "2019-02-20", 
        "description": "We derived analytical forward and inverse solution of thermoacoustic wave equation for nonhomogeneous medium. We modelled the nonhomogeneous medium as a multi-layer planar medium and defined initial conditions, continuity conditions on the layer boundaries and radiation conditions at infinity assuming the source distribution existing in all layers. These solutions of thermoacoustic wave equation are based on the method of Green\u2019s functions for layered planar media. For qualitative testing and comparison of the point-spread functions associated with the homogeneous and layered solutions, we performed numerical simulations. Our simulation results showed that the conventional inverse solution based on homogeneous medium assumption, as expected, produced incorrect locations of point sources, whereas our inverse solution involving the multi-layer planar medium produced point sources at the correct source locations. Also, we examined whether the performance of our layered inverse solution is sensitive to medium parameters used as priority information in the measured data. Our inverse solutions based on multi-layer planar media are applicable for cross-sectional two-dimensional imaging of abdominal structure and the organs such as breast and skin.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10851-019-00875-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041815", 
            "issn": [
              "0924-9907", 
              "1573-7683"
            ], 
            "name": "Journal of Mathematical Imaging and Vision", 
            "type": "Periodical"
          }
        ], 
        "name": "An Inverse Source Problem Connected with Thermoacoustic Imaging in Multi-layer Planar Medium", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cacd686b20636ebaf8d4b17dccb326046aad33080de872d78208cbf8bd71305f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10851-019-00875-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112229136"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10851-019-00875-2", 
          "https://app.dimensions.ai/details/publication/pub.1112229136"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47997_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10851-019-00875-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-019-00875-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-019-00875-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-019-00875-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-019-00875-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10851-019-00875-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nfc2bfa0f880841918db5ac9cb0a1e275
    4 schema:citation sg:pub.10.1007/978-0-387-92920-0_19
    5 sg:pub.10.1007/bf02446100
    6 https://app.dimensions.ai/details/publication/pub.1081774749
    7 https://doi.org/10.1006/jmaa.1995.1448
    8 https://doi.org/10.1016/0141-5425(91)90126-r
    9 https://doi.org/10.1016/0360-3016(80)90223-0
    10 https://doi.org/10.1063/1.2195024
    11 https://doi.org/10.1088/0031-9155/41/11/003
    12 https://doi.org/10.1088/0031-9155/54/19/r01
    13 https://doi.org/10.1088/0266-5611/23/5/016
    14 https://doi.org/10.1088/0266-5611/23/6/s04
    15 https://doi.org/10.1088/0266-5611/24/5/055006
    16 https://doi.org/10.1088/0266-5611/25/7/075011
    17 https://doi.org/10.1098/rsfs.2011.0028
    18 https://doi.org/10.1103/physreve.72.016706
    19 https://doi.org/10.1109/22.654920
    20 https://doi.org/10.1109/tmi.2002.801172
    21 https://doi.org/10.1109/tmi.2009.2032358
    22 https://doi.org/10.1117/1.jbo.19.1.017007
    23 https://doi.org/10.1117/12.280213
    24 https://doi.org/10.1117/12.356829
    25 https://doi.org/10.1117/12.386316
    26 https://doi.org/10.1118/1.597312
    27 https://doi.org/10.1137/120881270
    28 https://doi.org/10.1142/3435
    29 https://doi.org/10.1148/radiology.216.1.r00jl30279
    30 https://doi.org/10.1364/josaa.28.001114
    31 schema:datePublished 2019-02-20
    32 schema:datePublishedReg 2019-02-20
    33 schema:description We derived analytical forward and inverse solution of thermoacoustic wave equation for nonhomogeneous medium. We modelled the nonhomogeneous medium as a multi-layer planar medium and defined initial conditions, continuity conditions on the layer boundaries and radiation conditions at infinity assuming the source distribution existing in all layers. These solutions of thermoacoustic wave equation are based on the method of Green’s functions for layered planar media. For qualitative testing and comparison of the point-spread functions associated with the homogeneous and layered solutions, we performed numerical simulations. Our simulation results showed that the conventional inverse solution based on homogeneous medium assumption, as expected, produced incorrect locations of point sources, whereas our inverse solution involving the multi-layer planar medium produced point sources at the correct source locations. Also, we examined whether the performance of our layered inverse solution is sensitive to medium parameters used as priority information in the measured data. Our inverse solutions based on multi-layer planar media are applicable for cross-sectional two-dimensional imaging of abdominal structure and the organs such as breast and skin.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf sg:journal.1041815
    38 schema:name An Inverse Source Problem Connected with Thermoacoustic Imaging in Multi-layer Planar Medium
    39 schema:pagination 1-11
    40 schema:productId N0507e34eaf7a4187b4d9e48c2a82e67f
    41 N8096361a739c40428f0153723e00c41f
    42 Nfd3b51469e6c46319f95b93f586075aa
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112229136
    44 https://doi.org/10.1007/s10851-019-00875-2
    45 schema:sdDatePublished 2019-04-11T09:14
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nb5a0fd95bb6b43138d7f2d378a2f688c
    48 schema:url https://link.springer.com/10.1007%2Fs10851-019-00875-2
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0507e34eaf7a4187b4d9e48c2a82e67f schema:name dimensions_id
    53 schema:value pub.1112229136
    54 rdf:type schema:PropertyValue
    55 N72682290529f458b983c38f8bce546ea rdf:first Naa2d85e658f04476aeb98880b6be7811
    56 rdf:rest rdf:nil
    57 N8096361a739c40428f0153723e00c41f schema:name doi
    58 schema:value 10.1007/s10851-019-00875-2
    59 rdf:type schema:PropertyValue
    60 Na53a8f32e57e43c894075e726e50390d schema:affiliation https://www.grid.ac/institutes/grid.58192.37
    61 schema:familyName Uzun
    62 schema:givenName Banu
    63 rdf:type schema:Person
    64 Naa2d85e658f04476aeb98880b6be7811 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
    65 schema:familyName Yücel
    66 schema:givenName Hazel
    67 rdf:type schema:Person
    68 Nb5a0fd95bb6b43138d7f2d378a2f688c schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nfc2bfa0f880841918db5ac9cb0a1e275 rdf:first Na53a8f32e57e43c894075e726e50390d
    71 rdf:rest N72682290529f458b983c38f8bce546ea
    72 Nfd3b51469e6c46319f95b93f586075aa schema:name readcube_id
    73 schema:value cacd686b20636ebaf8d4b17dccb326046aad33080de872d78208cbf8bd71305f
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Artificial Intelligence and Image Processing
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1041815 schema:issn 0924-9907
    82 1573-7683
    83 schema:name Journal of Mathematical Imaging and Vision
    84 rdf:type schema:Periodical
    85 sg:pub.10.1007/978-0-387-92920-0_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025932570
    86 https://doi.org/10.1007/978-0-387-92920-0_19
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf02446100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005877891
    89 https://doi.org/10.1007/bf02446100
    90 rdf:type schema:CreativeWork
    91 https://app.dimensions.ai/details/publication/pub.1081774749 schema:CreativeWork
    92 https://doi.org/10.1006/jmaa.1995.1448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019036544
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0141-5425(91)90126-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233745
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/0360-3016(80)90223-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013813378
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1063/1.2195024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013961838
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1088/0031-9155/41/11/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022904
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1088/0031-9155/54/19/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027832
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1088/0266-5611/23/5/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014677679
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1088/0266-5611/23/6/s04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018212356
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1088/0266-5611/24/5/055006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041365762
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1088/0266-5611/25/7/075011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050079621
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1098/rsfs.2011.0028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021692161
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physreve.72.016706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733281
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/22.654920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061125771
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tmi.2002.801172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694276
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/tmi.2009.2032358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695473
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1117/1.jbo.19.1.017007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000453755
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1117/12.280213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031117226
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1117/12.356829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049363184
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1117/12.386316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025936297
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1118/1.597312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029823567
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1137/120881270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869574
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1142/3435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098868510
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1148/radiology.216.1.r00jl30279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011962542
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1364/josaa.28.001114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065163104
    139 rdf:type schema:CreativeWork
    140 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
    141 schema:name Mathematics Department, Işık University, 34980, Şile, Istanbul, Turkey
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...