Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Ugo V. Boscain, Roman Chertovskih, Jean-Paul Gauthier, Dario Prandi, Alexey Remizov

ABSTRACT

We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669–695, 2014) and based upon a semi-discrete variation of the Citti–Petitot–Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions. More... »

PAGES

1231-1245

References to SciGraph publications

  • 2002. Computational Methods for Fluid Dynamics in NONE
  • 2009. Exemplar-Based Interpolation of Sparsely Sampled Images in ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION
  • 2010-09. Existence of planar curves minimizing length and curvature in PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS
  • 2015. Image Processing in the Semidiscrete Group of Rototranslations in GEOMETRIC SCIENCE OF INFORMATION
  • 2014-06. Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2) in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2006-05. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 1982. Methods of Numerical Mathematics in NONE
  • 1967-12. Hypoelliptic second order differential equations in ACTA MATHEMATICA
  • 2017-01. Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2010-01. Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2011. Self-Similarity Measure for Assessment of Image Visual Quality in ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10851-018-0810-4

    DOI

    http://dx.doi.org/10.1007/s10851-018-0810-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103158524


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "CNRS, Laboratoire Jacques-Louis Lions, UPMC Univ Paris 06, 75005, Paris, France", 
                "INRIA Team CAGE, INRIA, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boscain", 
            "givenName": "Ugo V.", 
            "id": "sg:person.012546501367.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546501367.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Samara State Aerospace University", 
              "id": "https://www.grid.ac/institutes/grid.79011.3e", 
              "name": [
                "Research Center for Systems and Technologies, Faculty of Engineering, University of Porto, Rua Dr.\u00a0Roberto Frias, s/n, 4200-465, Porto, Portugal", 
                "Samara National Research University, 34 Moskovskoye Ave., 443086, Samara, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chertovskih", 
            "givenName": "Roman", 
            "id": "sg:person.0654216647.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654216647.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
              "id": "https://www.grid.ac/institutes/grid.462878.7", 
              "name": [
                "LSIS, UMR CNRS 7296, Universit\u00e9 de Toulon USTV, 83957, La Garde Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gauthier", 
            "givenName": "Jean-Paul", 
            "id": "sg:person.010301262074.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301262074.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CentraleSup\u00e9lec", 
              "id": "https://www.grid.ac/institutes/grid.494567.d", 
              "name": [
                "CNRS, L2S, CentraleSup\u00e9lec, 3, Rue Joliot-Curie, 91192, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prandi", 
            "givenName": "Dario", 
            "id": "sg:person.010665574144.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665574144.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, CMAP \u00c9cole Polytechnique, 91128, Palaiseau Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Remizov", 
            "givenName": "Alexey", 
            "id": "sg:person.011337611551.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337611551.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1113/jphysiol.1979.sp012803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004089083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-016-0669-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004923275", 
              "https://doi.org/10.1007/s10851-016-0669-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-016-0669-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004923275", 
              "https://doi.org/10.1007/s10851-016-0669-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2012.07.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006235240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2013.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013277570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23687-7_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013451618", 
              "https://doi.org/10.1007/978-3-642-23687-7_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/344779.344972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017343760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-009-0167-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017520180", 
              "https://doi.org/10.1007/s10851-009-0167-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-009-0167-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017520180", 
              "https://doi.org/10.1007/s10851-009-0167-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020924698", 
              "https://doi.org/10.1007/bf02392081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.863083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027821134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03641-5_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028395427", 
              "https://doi.org/10.1007/978-3-642-03641-5_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-25040-3_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033318547", 
              "https://doi.org/10.1007/978-3-319-25040-3_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0081543810030041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033955038", 
              "https://doi.org/10.1134/s0081543810030041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0081543810030041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033955038", 
              "https://doi.org/10.1134/s0081543810030041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jphysparis.2003.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035703699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.1980.0020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038702537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.19970770220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040199248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-005-3630-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044729966", 
              "https://doi.org/10.1007/s10851-005-3630-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-005-3630-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044729966", 
              "https://doi.org/10.1007/s10851-005-3630-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-013-0475-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047615142", 
              "https://doi.org/10.1007/s10851-013-0475-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-013-0475-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047615142", 
              "https://doi.org/10.1007/s10851-013-0475-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.1959.sp006308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047763294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052484604", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56026-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052484604", 
              "https://doi.org/10.1007/978-3-642-56026-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56026-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052484604", 
              "https://doi.org/10.1007/978-3-642-56026-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/cocv/2013082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056951983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0033-569x-07-01066-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059337184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0033-569x-10-01172-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059337294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0033-569x-10-01173-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059337295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.982815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061240423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2010.2049240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061642525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/11082405x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062864614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/130924731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062870906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/15m1013572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062873489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139901390088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062874745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214440436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21236/ada513256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091747783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2014.7040056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093472380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1998.999016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095826280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/surv/091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098702172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0001075800460053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099308637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8150-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705176", 
              "https://doi.org/10.1007/978-1-4613-8150-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8150-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705176", 
              "https://doi.org/10.1007/978-1-4613-8150-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669\u2013695, 2014) and based upon a semi-discrete variation of the Citti\u2013Petitot\u2013Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10851-018-0810-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6622312", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6416954", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041815", 
            "issn": [
              "0924-9907", 
              "1573-7683"
            ], 
            "name": "Journal of Mathematical Imaging and Vision", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "name": "Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion", 
        "pagination": "1231-1245", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dcf36a160ff43a4830e09162378e5c65c701d894243a2a8eb029da8cc6e0c346"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10851-018-0810-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103158524"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10851-018-0810-4", 
          "https://app.dimensions.ai/details/publication/pub.1103158524"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10851-018-0810-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-018-0810-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-018-0810-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-018-0810-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-018-0810-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10851-018-0810-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8be1929e532b474c9ff01154dfa895f5
    4 schema:citation sg:pub.10.1007/978-1-4613-8150-1
    5 sg:pub.10.1007/978-3-319-25040-3_67
    6 sg:pub.10.1007/978-3-642-03641-5_25
    7 sg:pub.10.1007/978-3-642-23687-7_42
    8 sg:pub.10.1007/978-3-642-56026-2
    9 sg:pub.10.1007/bf02392081
    10 sg:pub.10.1007/s10851-005-3630-2
    11 sg:pub.10.1007/s10851-009-0167-9
    12 sg:pub.10.1007/s10851-013-0475-y
    13 sg:pub.10.1007/s10851-016-0669-1
    14 sg:pub.10.1134/s0081543810030041
    15 https://app.dimensions.ai/details/publication/pub.1052484604
    16 https://doi.org/10.1002/zamm.19970770220
    17 https://doi.org/10.1016/j.image.2013.03.002
    18 https://doi.org/10.1016/j.jphysparis.2003.10.010
    19 https://doi.org/10.1016/j.sigpro.2012.07.022
    20 https://doi.org/10.1051/cocv/2013082
    21 https://doi.org/10.1090/s0033-569x-07-01066-0
    22 https://doi.org/10.1090/s0033-569x-10-01172-0
    23 https://doi.org/10.1090/s0033-569x-10-01173-3
    24 https://doi.org/10.1090/surv/091
    25 https://doi.org/10.1098/rspb.1980.0020
    26 https://doi.org/10.1109/83.982815
    27 https://doi.org/10.1109/cdc.2014.7040056
    28 https://doi.org/10.1109/icip.1998.999016
    29 https://doi.org/10.1109/tip.2010.2049240
    30 https://doi.org/10.1113/jphysiol.1959.sp006308
    31 https://doi.org/10.1113/jphysiol.1979.sp012803
    32 https://doi.org/10.1117/12.863083
    33 https://doi.org/10.1137/11082405x
    34 https://doi.org/10.1137/130924731
    35 https://doi.org/10.1137/15m1013572
    36 https://doi.org/10.1137/s0036139901390088
    37 https://doi.org/10.1145/344779.344972
    38 https://doi.org/10.21236/ada513256
    39 https://doi.org/10.4310/jdg/1214440436
    40 https://doi.org/10.5220/0001075800460053
    41 schema:datePublished 2018-10
    42 schema:datePublishedReg 2018-10-01
    43 schema:description We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669–695, 2014) and based upon a semi-discrete variation of the Citti–Petitot–Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N9d64fba2730e4a94807ec6aa754805ba
    48 Neb7f827bdd974687826cd155bcdf5b45
    49 sg:journal.1041815
    50 schema:name Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion
    51 schema:pagination 1231-1245
    52 schema:productId N32e15fc4df954c9c9a55168fb63fd56d
    53 N42d4f500a0f3428296b85ffdca9687af
    54 N9770527d452e4bc6994a2d6ce2b07e8c
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103158524
    56 https://doi.org/10.1007/s10851-018-0810-4
    57 schema:sdDatePublished 2019-04-11T13:57
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Nafb18e308213464a9a68f7ca667fc8a3
    60 schema:url http://link.springer.com/10.1007/s10851-018-0810-4
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N0a42a5b5a8654219831a973fc7385d09 rdf:first sg:person.010665574144.22
    65 rdf:rest Nd929ff14e199420a90e05295d842e7a5
    66 N32e15fc4df954c9c9a55168fb63fd56d schema:name dimensions_id
    67 schema:value pub.1103158524
    68 rdf:type schema:PropertyValue
    69 N42d4f500a0f3428296b85ffdca9687af schema:name readcube_id
    70 schema:value dcf36a160ff43a4830e09162378e5c65c701d894243a2a8eb029da8cc6e0c346
    71 rdf:type schema:PropertyValue
    72 N8be1929e532b474c9ff01154dfa895f5 rdf:first sg:person.012546501367.28
    73 rdf:rest Na3f6e7ace14b4fba9bc9cf978bc0a903
    74 N9770527d452e4bc6994a2d6ce2b07e8c schema:name doi
    75 schema:value 10.1007/s10851-018-0810-4
    76 rdf:type schema:PropertyValue
    77 N9d64fba2730e4a94807ec6aa754805ba schema:volumeNumber 60
    78 rdf:type schema:PublicationVolume
    79 Na3f6e7ace14b4fba9bc9cf978bc0a903 rdf:first sg:person.0654216647.05
    80 rdf:rest Nc97097e55bd04200ad36347140d63867
    81 Nafb18e308213464a9a68f7ca667fc8a3 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Nc97097e55bd04200ad36347140d63867 rdf:first sg:person.010301262074.33
    84 rdf:rest N0a42a5b5a8654219831a973fc7385d09
    85 Nd929ff14e199420a90e05295d842e7a5 rdf:first sg:person.011337611551.83
    86 rdf:rest rdf:nil
    87 Neb7f827bdd974687826cd155bcdf5b45 schema:issueNumber 8
    88 rdf:type schema:PublicationIssue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:grant.6416954 http://pending.schema.org/fundedItem sg:pub.10.1007/s10851-018-0810-4
    96 rdf:type schema:MonetaryGrant
    97 sg:grant.6622312 http://pending.schema.org/fundedItem sg:pub.10.1007/s10851-018-0810-4
    98 rdf:type schema:MonetaryGrant
    99 sg:journal.1041815 schema:issn 0924-9907
    100 1573-7683
    101 schema:name Journal of Mathematical Imaging and Vision
    102 rdf:type schema:Periodical
    103 sg:person.010301262074.33 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
    104 schema:familyName Gauthier
    105 schema:givenName Jean-Paul
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301262074.33
    107 rdf:type schema:Person
    108 sg:person.010665574144.22 schema:affiliation https://www.grid.ac/institutes/grid.494567.d
    109 schema:familyName Prandi
    110 schema:givenName Dario
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665574144.22
    112 rdf:type schema:Person
    113 sg:person.011337611551.83 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    114 schema:familyName Remizov
    115 schema:givenName Alexey
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337611551.83
    117 rdf:type schema:Person
    118 sg:person.012546501367.28 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    119 schema:familyName Boscain
    120 schema:givenName Ugo V.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546501367.28
    122 rdf:type schema:Person
    123 sg:person.0654216647.05 schema:affiliation https://www.grid.ac/institutes/grid.79011.3e
    124 schema:familyName Chertovskih
    125 schema:givenName Roman
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654216647.05
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-1-4613-8150-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705176
    129 https://doi.org/10.1007/978-1-4613-8150-1
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-319-25040-3_67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318547
    132 https://doi.org/10.1007/978-3-319-25040-3_67
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-642-03641-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028395427
    135 https://doi.org/10.1007/978-3-642-03641-5_25
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-642-23687-7_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013451618
    138 https://doi.org/10.1007/978-3-642-23687-7_42
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-642-56026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052484604
    141 https://doi.org/10.1007/978-3-642-56026-2
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02392081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020924698
    144 https://doi.org/10.1007/bf02392081
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10851-005-3630-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044729966
    147 https://doi.org/10.1007/s10851-005-3630-2
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10851-009-0167-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017520180
    150 https://doi.org/10.1007/s10851-009-0167-9
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10851-013-0475-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047615142
    153 https://doi.org/10.1007/s10851-013-0475-y
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10851-016-0669-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004923275
    156 https://doi.org/10.1007/s10851-016-0669-1
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1134/s0081543810030041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033955038
    159 https://doi.org/10.1134/s0081543810030041
    160 rdf:type schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1052484604 schema:CreativeWork
    162 https://doi.org/10.1002/zamm.19970770220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040199248
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.image.2013.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277570
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.jphysparis.2003.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035703699
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.sigpro.2012.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006235240
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1051/cocv/2013082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056951983
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1090/s0033-569x-07-01066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059337184
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1090/s0033-569x-10-01172-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059337294
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1090/s0033-569x-10-01173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059337295
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1090/surv/091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702172
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1098/rspb.1980.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702537
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/83.982815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240423
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/cdc.2014.7040056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093472380
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/icip.1998.999016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095826280
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/tip.2010.2049240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642525
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1113/jphysiol.1959.sp006308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047763294
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1113/jphysiol.1979.sp012803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004089083
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1117/12.863083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027821134
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1137/11082405x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062864614
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1137/130924731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870906
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1137/15m1013572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873489
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1137/s0036139901390088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874745
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1145/344779.344972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017343760
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.21236/ada513256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091747783
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.4310/jdg/1214440436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459573
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.5220/0001075800460053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099308637
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    213 schema:name CNRS, CMAP École Polytechnique, 91128, Palaiseau Cedex, France
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.462878.7 schema:alternateName Laboratoire des Sciences de l'Information et des Systèmes
    216 schema:name LSIS, UMR CNRS 7296, Université de Toulon USTV, 83957, La Garde Cedex, France
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.494567.d schema:alternateName CentraleSupélec
    219 schema:name CNRS, L2S, CentraleSupélec, 3, Rue Joliot-Curie, 91192, Gif-sur-Yvette, France
    220 rdf:type schema:Organization
    221 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
    222 schema:name CNRS, Laboratoire Jacques-Louis Lions, UPMC Univ Paris 06, 75005, Paris, France
    223 INRIA Team CAGE, INRIA, Paris, France
    224 rdf:type schema:Organization
    225 https://www.grid.ac/institutes/grid.79011.3e schema:alternateName Samara State Aerospace University
    226 schema:name Research Center for Systems and Technologies, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
    227 Samara National Research University, 34 Moskovskoye Ave., 443086, Samara, Russia
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...