Techniques for Gradient-Based Bilevel Optimization with Non-smooth Lower Level Problems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-17

AUTHORS

Peter Ochs, René Ranftl, Thomas Brox, Thomas Pock

ABSTRACT

We propose techniques for approximating bilevel optimization problems with non-smooth lower level problems that can have a non-unique solution. To this end, we substitute the expression of a minimizer of the lower level minimization problem with an iterative algorithm that is guaranteed to converge to a minimizer of the problem. Using suitable non-linear proximal distance functions, the update mappings of such an iterative algorithm can be differentiable, notwithstanding the fact that the minimization problem is non-smooth. More... »

PAGES

175-194

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10851-016-0663-7

DOI

http://dx.doi.org/10.1007/s10851-016-0663-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024618651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Mathematical Image Analysis Group, University of Saarland, Saarbr\u00fccken, Germany", 
            "Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochs", 
        "givenName": "Peter", 
        "id": "sg:person.011151475055.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151475055.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visual Computing Lab, Intel Labs, Santa Clara, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.419318.6", 
          "name": [
            "Visual Computing Lab, Intel Labs, Santa Clara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranftl", 
        "givenName": "Ren\u00e9", 
        "id": "sg:person.013557163412.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557163412.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria", 
            "Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pock", 
        "givenName": "Thomas", 
        "id": "sg:person.015744126036.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10107-015-0957-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909932", 
          "https://doi.org/10.1007/s10107-015-0957-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-010-0251-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010318529", 
          "https://doi.org/10.1007/s10851-010-0251-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-011-0484-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053470670", 
          "https://doi.org/10.1007/s10107-011-0484-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01128757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019490160", 
          "https://doi.org/10.1007/bf01128757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-010-9744-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015795586", 
          "https://doi.org/10.1007/s10957-010-9744-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-18461-6_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041058839", 
          "https://doi.org/10.1007/978-3-319-18461-6_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40602-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003302889", 
          "https://doi.org/10.1007/978-3-642-40602-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68860-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002853911", 
          "https://doi.org/10.1007/978-3-540-68860-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022481421", 
          "https://doi.org/10.1007/bf01589116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11752-2_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028888654", 
          "https://doi.org/10.1007/978-3-319-11752-2_9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-17", 
    "datePublishedReg": "2016-05-17", 
    "description": "We propose techniques for approximating bilevel optimization problems with non-smooth lower level problems that can have a non-unique solution. To this end, we substitute the expression of a minimizer of the lower level minimization problem with an iterative algorithm that is guaranteed to converge to a minimizer of the problem. Using suitable non-linear proximal distance functions, the update mappings of such an iterative algorithm can be differentiable, notwithstanding the fact that the minimization problem is non-smooth.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10851-016-0663-7", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6208924", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6207597", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041815", 
        "issn": [
          "0924-9907", 
          "1573-7683"
        ], 
        "name": "Journal of Mathematical Imaging and Vision", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "minimization problem", 
      "iterative algorithm", 
      "level problem", 
      "bilevel optimization problem", 
      "lower level problem", 
      "non-unique solutions", 
      "optimization problem", 
      "bilevel optimization", 
      "minimizers", 
      "distance function", 
      "problem", 
      "algorithm", 
      "optimization", 
      "solution", 
      "technique", 
      "function", 
      "gradient", 
      "mapping", 
      "fact", 
      "end", 
      "expression"
    ], 
    "name": "Techniques for Gradient-Based Bilevel Optimization with Non-smooth Lower Level Problems", 
    "pagination": "175-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024618651"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10851-016-0663-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10851-016-0663-7", 
      "https://app.dimensions.ai/details/publication/pub.1024618651"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_701.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10851-016-0663-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-016-0663-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-016-0663-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-016-0663-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-016-0663-7'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      55 URIs      37 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10851-016-0663-7 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N041e78911135425cb0cc1860d08b3c7f
4 schema:citation sg:pub.10.1007/978-3-319-11752-2_9
5 sg:pub.10.1007/978-3-319-18461-6_52
6 sg:pub.10.1007/978-3-540-68860-0_2
7 sg:pub.10.1007/978-3-642-40602-7_30
8 sg:pub.10.1007/bf01128757
9 sg:pub.10.1007/bf01589116
10 sg:pub.10.1007/s10107-011-0484-9
11 sg:pub.10.1007/s10107-015-0957-3
12 sg:pub.10.1007/s10851-010-0251-1
13 sg:pub.10.1007/s10957-010-9744-8
14 schema:datePublished 2016-05-17
15 schema:datePublishedReg 2016-05-17
16 schema:description We propose techniques for approximating bilevel optimization problems with non-smooth lower level problems that can have a non-unique solution. To this end, we substitute the expression of a minimizer of the lower level minimization problem with an iterative algorithm that is guaranteed to converge to a minimizer of the problem. Using suitable non-linear proximal distance functions, the update mappings of such an iterative algorithm can be differentiable, notwithstanding the fact that the minimization problem is non-smooth.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N099aea408de24031bc7fa8bf35d71398
20 N6170d944366b4a198b43481d6cacb83b
21 sg:journal.1041815
22 schema:keywords algorithm
23 bilevel optimization
24 bilevel optimization problem
25 distance function
26 end
27 expression
28 fact
29 function
30 gradient
31 iterative algorithm
32 level problem
33 lower level problem
34 mapping
35 minimization problem
36 minimizers
37 non-unique solutions
38 optimization
39 optimization problem
40 problem
41 solution
42 technique
43 schema:name Techniques for Gradient-Based Bilevel Optimization with Non-smooth Lower Level Problems
44 schema:pagination 175-194
45 schema:productId Nbdff66550d8f40288c48633c6e40543e
46 Ndcb6a3f9cc124e14a4742e04bb3b2af4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024618651
48 https://doi.org/10.1007/s10851-016-0663-7
49 schema:sdDatePublished 2022-10-01T06:41
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nfb4a9e268a624fc19661d67695318d0e
52 schema:url https://doi.org/10.1007/s10851-016-0663-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N041e78911135425cb0cc1860d08b3c7f rdf:first sg:person.011151475055.48
57 rdf:rest N2a02ddd683904e288b52cf84f8b3a443
58 N099aea408de24031bc7fa8bf35d71398 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N2a02ddd683904e288b52cf84f8b3a443 rdf:first sg:person.013557163412.33
61 rdf:rest Na78604a2b71748acb34ef1dc99611c34
62 N6170d944366b4a198b43481d6cacb83b schema:volumeNumber 56
63 rdf:type schema:PublicationVolume
64 N980c61315ee24643b247c4cb0caa0dcb rdf:first sg:person.015744126036.09
65 rdf:rest rdf:nil
66 Na78604a2b71748acb34ef1dc99611c34 rdf:first sg:person.012443225372.65
67 rdf:rest N980c61315ee24643b247c4cb0caa0dcb
68 Nbdff66550d8f40288c48633c6e40543e schema:name doi
69 schema:value 10.1007/s10851-016-0663-7
70 rdf:type schema:PropertyValue
71 Ndcb6a3f9cc124e14a4742e04bb3b2af4 schema:name dimensions_id
72 schema:value pub.1024618651
73 rdf:type schema:PropertyValue
74 Nfb4a9e268a624fc19661d67695318d0e schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:grant.6207597 http://pending.schema.org/fundedItem sg:pub.10.1007/s10851-016-0663-7
83 rdf:type schema:MonetaryGrant
84 sg:grant.6208924 http://pending.schema.org/fundedItem sg:pub.10.1007/s10851-016-0663-7
85 rdf:type schema:MonetaryGrant
86 sg:journal.1041815 schema:issn 0924-9907
87 1573-7683
88 schema:name Journal of Mathematical Imaging and Vision
89 schema:publisher Springer Nature
90 rdf:type schema:Periodical
91 sg:person.011151475055.48 schema:affiliation grid-institutes:grid.5963.9
92 schema:familyName Ochs
93 schema:givenName Peter
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151475055.48
95 rdf:type schema:Person
96 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
97 schema:familyName Brox
98 schema:givenName Thomas
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
100 rdf:type schema:Person
101 sg:person.013557163412.33 schema:affiliation grid-institutes:grid.419318.6
102 schema:familyName Ranftl
103 schema:givenName René
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557163412.33
105 rdf:type schema:Person
106 sg:person.015744126036.09 schema:affiliation grid-institutes:grid.4332.6
107 schema:familyName Pock
108 schema:givenName Thomas
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-319-11752-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028888654
112 https://doi.org/10.1007/978-3-319-11752-2_9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-319-18461-6_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041058839
115 https://doi.org/10.1007/978-3-319-18461-6_52
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-540-68860-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002853911
118 https://doi.org/10.1007/978-3-540-68860-0_2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-40602-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003302889
121 https://doi.org/10.1007/978-3-642-40602-7_30
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01128757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019490160
124 https://doi.org/10.1007/bf01128757
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01589116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022481421
127 https://doi.org/10.1007/bf01589116
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10107-011-0484-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053470670
130 https://doi.org/10.1007/s10107-011-0484-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10107-015-0957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909932
133 https://doi.org/10.1007/s10107-015-0957-3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10851-010-0251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010318529
136 https://doi.org/10.1007/s10851-010-0251-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10957-010-9744-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015795586
139 https://doi.org/10.1007/s10957-010-9744-8
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.419318.6 schema:alternateName Visual Computing Lab, Intel Labs, Santa Clara, CA, USA
142 schema:name Visual Computing Lab, Intel Labs, Santa Clara, CA, USA
143 rdf:type schema:Organization
144 grid-institutes:grid.4332.6 schema:alternateName Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
145 schema:name Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
146 Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
147 rdf:type schema:Organization
148 grid-institutes:grid.5963.9 schema:alternateName Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany
149 schema:name Computer Vision Group, University of Freiburg, Freiburg im Breisgau, Germany
150 Mathematical Image Analysis Group, University of Saarland, Saarbrücken, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...