Optimal Dual Certificates for Noise Robustness Bounds in Compressive Sensing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

Marc Nicodème, Flavius Turcu, Charles Dossal

ABSTRACT

The paper deals with optimizing Lipschitz bounds relating locally the reconstruction error to the measurement error in the RIPless compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relative to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. We show in the paper that such a family of bounds admits a unique minimizer that has a deep geometric meaning and can be explicitly constructed via a convex projection algorithm that we describe. We also give a faster greedy algorithm that provides approximate solutions. The algorithms are numerically illustrated and analyzed for different types of sensing matrices, such as random matrices or deterministic matrices issued from tomography and super-resolution. More... »

PAGES

251-263

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y

DOI

http://dx.doi.org/10.1007/s10851-015-0575-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030648142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Math\u00e9matiques de Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.462496.b", 
          "name": [
            "IMS, Universit\u00e9 de Bordeaux, Talence, France", 
            "IMB, Universit\u00e9 de Bordeaux, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicod\u00e8me", 
        "givenName": "Marc", 
        "id": "sg:person.012444162067.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444162067.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "IMS, Universit\u00e9 de Bordeaux, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turcu", 
        "givenName": "Flavius", 
        "id": "sg:person.014141735732.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141735732.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Math\u00e9matiques de Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.462496.b", 
          "name": [
            "IMB, Universit\u00e9 de Bordeaux, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dossal", 
        "givenName": "Charles", 
        "id": "sg:person.016043513033.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043513033.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.crma.2011.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001116619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2008.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.871582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007222025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007862380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10208-014-9228-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018150404", 
          "https://doi.org/10.1007/s10208-014-9228-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022418491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-013-9292-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197525", 
          "https://doi.org/10.1007/s00041-013-9292-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/20/5/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037593251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.20350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053255083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.20350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053255083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/56.2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061189917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.828141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.858979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.862083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.864420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2007.903129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2012.2233859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061654241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080714488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827596304010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aos653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390227"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "The paper deals with optimizing Lipschitz bounds relating locally the reconstruction error to the measurement error in the RIPless compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relative to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. We show in the paper that such a family of bounds admits a unique minimizer that has a deep geometric meaning and can be explicitly constructed via a convex projection algorithm that we describe. We also give a faster greedy algorithm that provides approximate solutions. The algorithms are numerically illustrated and analyzed for different types of sensing matrices, such as random matrices or deterministic matrices issued from tomography and super-resolution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10851-015-0575-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041815", 
        "issn": [
          "0924-9907", 
          "1573-7683"
        ], 
        "name": "Journal of Mathematical Imaging and Vision", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Optimal Dual Certificates for Noise Robustness Bounds in Compressive Sensing", 
    "pagination": "251-263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9200febaf68dcc146315466ba0b2530234b8bffcade256832669020696aedff2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10851-015-0575-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030648142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10851-015-0575-y", 
      "https://app.dimensions.ai/details/publication/pub.1030648142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10851-015-0575-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10851-015-0575-y schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Na909c52ffd6e4454aa6efc8664f3b85d
4 schema:citation sg:pub.10.1007/s00041-013-9292-3
5 sg:pub.10.1007/s10208-014-9228-6
6 https://doi.org/10.1002/cpa.20350
7 https://doi.org/10.1002/cpa.21455
8 https://doi.org/10.1016/j.acha.2013.08.001
9 https://doi.org/10.1016/j.crma.2008.03.014
10 https://doi.org/10.1016/j.crma.2011.12.014
11 https://doi.org/10.1088/0266-5611/20/5/005
12 https://doi.org/10.1109/56.2083
13 https://doi.org/10.1109/tit.2004.828141
14 https://doi.org/10.1109/tit.2005.858979
15 https://doi.org/10.1109/tit.2005.862083
16 https://doi.org/10.1109/tit.2005.864420
17 https://doi.org/10.1109/tit.2006.871582
18 https://doi.org/10.1109/tit.2007.903129
19 https://doi.org/10.1109/tit.2012.2233859
20 https://doi.org/10.1137/080714488
21 https://doi.org/10.1137/s1064827596304010
22 https://doi.org/10.1214/08-aos653
23 schema:datePublished 2015-11
24 schema:datePublishedReg 2015-11-01
25 schema:description The paper deals with optimizing Lipschitz bounds relating locally the reconstruction error to the measurement error in the RIPless compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relative to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. We show in the paper that such a family of bounds admits a unique minimizer that has a deep geometric meaning and can be explicitly constructed via a convex projection algorithm that we describe. We also give a faster greedy algorithm that provides approximate solutions. The algorithms are numerically illustrated and analyzed for different types of sensing matrices, such as random matrices or deterministic matrices issued from tomography and super-resolution.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Nb92f2b00cebd40749101d9ec0a1b21be
30 Nd5eb109ccfa34e61aac2b6cc230a3ac7
31 sg:journal.1041815
32 schema:name Optimal Dual Certificates for Noise Robustness Bounds in Compressive Sensing
33 schema:pagination 251-263
34 schema:productId N36219a16fd2d4dc0964131039ca38998
35 N7b2f8755bf3c4d438cd836ce894ca405
36 Nae6da925aca241fc8c8300c00f969158
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030648142
38 https://doi.org/10.1007/s10851-015-0575-y
39 schema:sdDatePublished 2019-04-10T17:32
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ndd7002fe275c4499b03e091a402728e1
42 schema:url http://link.springer.com/10.1007%2Fs10851-015-0575-y
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N36219a16fd2d4dc0964131039ca38998 schema:name dimensions_id
47 schema:value pub.1030648142
48 rdf:type schema:PropertyValue
49 N7b2f8755bf3c4d438cd836ce894ca405 schema:name readcube_id
50 schema:value 9200febaf68dcc146315466ba0b2530234b8bffcade256832669020696aedff2
51 rdf:type schema:PropertyValue
52 Na909c52ffd6e4454aa6efc8664f3b85d rdf:first sg:person.012444162067.47
53 rdf:rest Nef45c0087d7e46d4912c2479c4b40ecb
54 Nae6da925aca241fc8c8300c00f969158 schema:name doi
55 schema:value 10.1007/s10851-015-0575-y
56 rdf:type schema:PropertyValue
57 Nb92f2b00cebd40749101d9ec0a1b21be schema:volumeNumber 53
58 rdf:type schema:PublicationVolume
59 Nc22063d0d7fb4c57be13973d9594dc0d rdf:first sg:person.016043513033.79
60 rdf:rest rdf:nil
61 Nd5eb109ccfa34e61aac2b6cc230a3ac7 schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 Ndd7002fe275c4499b03e091a402728e1 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nef45c0087d7e46d4912c2479c4b40ecb rdf:first sg:person.014141735732.43
66 rdf:rest Nc22063d0d7fb4c57be13973d9594dc0d
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
71 schema:name Applied Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1041815 schema:issn 0924-9907
74 1573-7683
75 schema:name Journal of Mathematical Imaging and Vision
76 rdf:type schema:Periodical
77 sg:person.012444162067.47 schema:affiliation https://www.grid.ac/institutes/grid.462496.b
78 schema:familyName Nicodème
79 schema:givenName Marc
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444162067.47
81 rdf:type schema:Person
82 sg:person.014141735732.43 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
83 schema:familyName Turcu
84 schema:givenName Flavius
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141735732.43
86 rdf:type schema:Person
87 sg:person.016043513033.79 schema:affiliation https://www.grid.ac/institutes/grid.462496.b
88 schema:familyName Dossal
89 schema:givenName Charles
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043513033.79
91 rdf:type schema:Person
92 sg:pub.10.1007/s00041-013-9292-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033197525
93 https://doi.org/10.1007/s00041-013-9292-3
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10208-014-9228-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018150404
96 https://doi.org/10.1007/s10208-014-9228-6
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/cpa.20350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053255083
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/cpa.21455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007862380
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.acha.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022418491
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.crma.2008.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002389075
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.crma.2011.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001116619
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0266-5611/20/5/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037593251
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/56.2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061189917
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tit.2004.828141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650125
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tit.2005.858979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650709
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tit.2005.862083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650773
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tit.2005.864420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650802
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tit.2006.871582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222025
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tit.2007.903129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651471
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tit.2012.2233859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654241
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1137/080714488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854422
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/s1064827596304010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884436
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1214/08-aos653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390227
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.462496.b schema:alternateName Institut de Mathématiques de Bordeaux
133 schema:name IMB, Université de Bordeaux, Talence, France
134 IMS, Université de Bordeaux, Talence, France
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
137 schema:name IMS, Université de Bordeaux, Talence, France
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...