Ontology type: schema:ScholarlyArticle
2015-11
AUTHORSMarc Nicodème, Flavius Turcu, Charles Dossal
ABSTRACTThe paper deals with optimizing Lipschitz bounds relating locally the reconstruction error to the measurement error in the RIPless compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relative to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. We show in the paper that such a family of bounds admits a unique minimizer that has a deep geometric meaning and can be explicitly constructed via a convex projection algorithm that we describe. We also give a faster greedy algorithm that provides approximate solutions. The algorithms are numerically illustrated and analyzed for different types of sensing matrices, such as random matrices or deterministic matrices issued from tomography and super-resolution. More... »
PAGES251-263
http://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y
DOIhttp://dx.doi.org/10.1007/s10851-015-0575-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030648142
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut de Math\u00e9matiques de Bordeaux",
"id": "https://www.grid.ac/institutes/grid.462496.b",
"name": [
"IMS, Universit\u00e9 de Bordeaux, Talence, France",
"IMB, Universit\u00e9 de Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Nicod\u00e8me",
"givenName": "Marc",
"id": "sg:person.012444162067.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444162067.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de l'Integration du Materiau au Systeme",
"id": "https://www.grid.ac/institutes/grid.462974.a",
"name": [
"IMS, Universit\u00e9 de Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Turcu",
"givenName": "Flavius",
"id": "sg:person.014141735732.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141735732.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut de Math\u00e9matiques de Bordeaux",
"id": "https://www.grid.ac/institutes/grid.462496.b",
"name": [
"IMB, Universit\u00e9 de Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Dossal",
"givenName": "Charles",
"id": "sg:person.016043513033.79",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043513033.79"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.crma.2011.12.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001116619"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.crma.2008.03.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002389075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2006.871582",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007222025"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.21455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007862380"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-014-9228-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018150404",
"https://doi.org/10.1007/s10208-014-9228-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.acha.2013.08.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022418491"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00041-013-9292-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033197525",
"https://doi.org/10.1007/s00041-013-9292-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0266-5611/20/5/005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037593251"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.20350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053255083"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.20350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053255083"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/56.2083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061189917"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2004.828141",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061650125"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2005.858979",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061650709"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2005.862083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061650773"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2005.864420",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061650802"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2007.903129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061651471"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.2012.2233859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061654241"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/080714488",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062854422"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s1064827596304010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062884436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/08-aos653",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064390227"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-11",
"datePublishedReg": "2015-11-01",
"description": "The paper deals with optimizing Lipschitz bounds relating locally the reconstruction error to the measurement error in the RIPless compressive sensing framework. Most recent theoretical papers in the field parametrize such bounds relative to certain families of vectors called dual certificates, which are fundamental to several reconstruction criteria. We show in the paper that such a family of bounds admits a unique minimizer that has a deep geometric meaning and can be explicitly constructed via a convex projection algorithm that we describe. We also give a faster greedy algorithm that provides approximate solutions. The algorithms are numerically illustrated and analyzed for different types of sensing matrices, such as random matrices or deterministic matrices issued from tomography and super-resolution.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10851-015-0575-y",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041815",
"issn": [
"0924-9907",
"1573-7683"
],
"name": "Journal of Mathematical Imaging and Vision",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "53"
}
],
"name": "Optimal Dual Certificates for Noise Robustness Bounds in Compressive Sensing",
"pagination": "251-263",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9200febaf68dcc146315466ba0b2530234b8bffcade256832669020696aedff2"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10851-015-0575-y"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030648142"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10851-015-0575-y",
"https://app.dimensions.ai/details/publication/pub.1030648142"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T17:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000513.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10851-015-0575-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-015-0575-y'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
21 PREDICATES
46 URIs
19 LITERALS
7 BLANK NODES