On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Javier Plaza, Eligius M. T. Hendrix, Inmaculada García, Gabriel Martín, Antonio Plaza

ABSTRACT

Hyperspectral imaging is an active area of research in Earth and planetary observation. One of the most important techniques for analyzing hyperspectral images is spectral unmixing, in which mixed pixels (resulting from insufficient spatial resolution of the imaging sensor) are decomposed into a collection of spectrally pure constituent spectra, called endmembers weighted by their correspondent fractions, or abundances. Over the last years, several algorithms have been developed for automatic endmember extraction. Many of them assume that the images contain at least one pure spectral signature for each distinct material. However, this assumption is usually not valid due to spatial resolution, mixing phenomena, and other considerations. A recent trend in the hyperspectral imaging community is to design endmember identification algorithms which do not assume the presence of pure pixels. Despite the proliferation of this kind of algorithms, many of which are based on minimum enclosing simplex concepts, a rigorous quantitative and comparative assessment is not yet available. In this paper, we provide a comparative analysis of endmember extraction algorithms without the pure pixel assumption. In our experiments we use synthetic hyperspectral data sets (constructed using fractals) and real hyperspectral scenes collected by NASA’s Jet Propulsion Laboratory. More... »

PAGES

163-175

References to SciGraph publications

  • 2010. On the Use of a Hybrid Approach to Contrast Endmember Induction Algorithms in HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10851-011-0276-0

    DOI

    http://dx.doi.org/10.1007/s10851-011-0276-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001033760


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Extremadura", 
              "id": "https://www.grid.ac/institutes/grid.8393.1", 
              "name": [
                "Hyperspectral Computing Laboratory, Dept. Technology of Computers and Communications, University of Extremadura, Avda. de la Universidad s/n, 10071, Caceres, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plaza", 
            "givenName": "Javier", 
            "id": "sg:person.010152674017.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152674017.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Malaga", 
              "id": "https://www.grid.ac/institutes/grid.10215.37", 
              "name": [
                "Department of Computer Architecture, University of M\u00e1laga, 29071, M\u00e1laga, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hendrix", 
            "givenName": "Eligius M. T.", 
            "id": "sg:person.016072607151.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016072607151.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Malaga", 
              "id": "https://www.grid.ac/institutes/grid.10215.37", 
              "name": [
                "Department of Computer Architecture, University of M\u00e1laga, 29071, M\u00e1laga, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda", 
            "givenName": "Inmaculada", 
            "id": "sg:person.0713261565.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713261565.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Extremadura", 
              "id": "https://www.grid.ac/institutes/grid.8393.1", 
              "name": [
                "Hyperspectral Computing Laboratory, Dept. Technology of Computers and Communications, University of Extremadura, Avda. de la Universidad s/n, 10071, Caceres, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00edn", 
            "givenName": "Gabriel", 
            "id": "sg:person.015047625133.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047625133.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Extremadura", 
              "id": "https://www.grid.ac/institutes/grid.8393.1", 
              "name": [
                "Hyperspectral Computing Laboratory, Dept. Technology of Computers and Communications, University of Extremadura, Avda. de la Universidad s/n, 10071, Caceres, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plaza", 
            "givenName": "Antonio", 
            "id": "sg:person.011511514573.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1029/2002je001847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008851731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13803-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015846327", 
              "https://doi.org/10.1007/978-3-642-13803-4_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13803-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015846327", 
              "https://doi.org/10.1007/978-3-642-13803-4_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2008.06.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022450875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2010.03.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027207267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(98)00064-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035457258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2009.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040403027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.297973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.298007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/36.3001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061161095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/79.974727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061232100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2009.2025520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061358876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/taes.2003.1261124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061484495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2002.802494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061608621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2003.819189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2003.820314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2004.835299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2005.844293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061609414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2006.888466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061610053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2008.918089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061610847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2009.2025802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061801747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.228.4704.1147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062530321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.47.000f77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065122808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/whispers.2009.5289072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093992843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2008.4779330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094353457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02", 
        "datePublishedReg": "2012-02-01", 
        "description": "Hyperspectral imaging is an active area of research in Earth and planetary observation. One of the most important techniques for analyzing hyperspectral images is spectral unmixing, in which mixed pixels (resulting from insufficient spatial resolution of the imaging sensor) are decomposed into a collection of spectrally pure constituent spectra, called endmembers weighted by their correspondent fractions, or abundances. Over the last years, several algorithms have been developed for automatic endmember extraction. Many of them assume that the images contain at least one pure spectral signature for each distinct material. However, this assumption is usually not valid due to spatial resolution, mixing phenomena, and other considerations. A recent trend in the hyperspectral imaging community is to design endmember identification algorithms which do not assume the presence of pure pixels. Despite the proliferation of this kind of algorithms, many of which are based on minimum enclosing simplex concepts, a rigorous quantitative and comparative assessment is not yet available. In this paper, we provide a comparative analysis of endmember extraction algorithms without the pure pixel assumption. In our experiments we use synthetic hyperspectral data sets (constructed using fractals) and real hyperspectral scenes collected by NASA\u2019s Jet Propulsion Laboratory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10851-011-0276-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041815", 
            "issn": [
              "0924-9907", 
              "1573-7683"
            ], 
            "name": "Journal of Mathematical Imaging and Vision", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "name": "On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms", 
        "pagination": "163-175", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "04ecf51954acdbdcd80d0fc3e6c3391e48a472ba3215685f4429147b9373a3f3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10851-011-0276-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001033760"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10851-011-0276-0", 
          "https://app.dimensions.ai/details/publication/pub.1001033760"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10851-011-0276-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-011-0276-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-011-0276-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-011-0276-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-011-0276-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10851-011-0276-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1b8284dd09704b57a140fb794b0b5490
    4 schema:citation sg:pub.10.1007/978-3-642-13803-4_9
    5 https://doi.org/10.1016/j.ins.2010.03.022
    6 https://doi.org/10.1016/j.neucom.2008.06.026
    7 https://doi.org/10.1016/j.patcog.2009.04.008
    8 https://doi.org/10.1016/s0034-4257(98)00064-9
    9 https://doi.org/10.1029/2002je001847
    10 https://doi.org/10.1109/36.297973
    11 https://doi.org/10.1109/36.298007
    12 https://doi.org/10.1109/36.3001
    13 https://doi.org/10.1109/79.974727
    14 https://doi.org/10.1109/igarss.2008.4779330
    15 https://doi.org/10.1109/lgrs.2009.2025520
    16 https://doi.org/10.1109/taes.2003.1261124
    17 https://doi.org/10.1109/tgrs.2002.802494
    18 https://doi.org/10.1109/tgrs.2003.819189
    19 https://doi.org/10.1109/tgrs.2003.820314
    20 https://doi.org/10.1109/tgrs.2004.835299
    21 https://doi.org/10.1109/tgrs.2005.844293
    22 https://doi.org/10.1109/tgrs.2006.888466
    23 https://doi.org/10.1109/tgrs.2008.918089
    24 https://doi.org/10.1109/tsp.2009.2025802
    25 https://doi.org/10.1109/whispers.2009.5289072
    26 https://doi.org/10.1126/science.228.4704.1147
    27 https://doi.org/10.1364/ao.47.000f77
    28 https://doi.org/10.2307/2346830
    29 schema:datePublished 2012-02
    30 schema:datePublishedReg 2012-02-01
    31 schema:description Hyperspectral imaging is an active area of research in Earth and planetary observation. One of the most important techniques for analyzing hyperspectral images is spectral unmixing, in which mixed pixels (resulting from insufficient spatial resolution of the imaging sensor) are decomposed into a collection of spectrally pure constituent spectra, called endmembers weighted by their correspondent fractions, or abundances. Over the last years, several algorithms have been developed for automatic endmember extraction. Many of them assume that the images contain at least one pure spectral signature for each distinct material. However, this assumption is usually not valid due to spatial resolution, mixing phenomena, and other considerations. A recent trend in the hyperspectral imaging community is to design endmember identification algorithms which do not assume the presence of pure pixels. Despite the proliferation of this kind of algorithms, many of which are based on minimum enclosing simplex concepts, a rigorous quantitative and comparative assessment is not yet available. In this paper, we provide a comparative analysis of endmember extraction algorithms without the pure pixel assumption. In our experiments we use synthetic hyperspectral data sets (constructed using fractals) and real hyperspectral scenes collected by NASA’s Jet Propulsion Laboratory.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf Naa66ac29b4b54d578886bf737607658e
    36 Nd3cbeee81e9d47209117db287156a79c
    37 sg:journal.1041815
    38 schema:name On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms
    39 schema:pagination 163-175
    40 schema:productId N831a3dfa340b412ea9eb4c6178fce914
    41 N86bafbcf65b44c62810f7471b4535080
    42 Nbb4debf92be947a6b2b4794573934b2f
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001033760
    44 https://doi.org/10.1007/s10851-011-0276-0
    45 schema:sdDatePublished 2019-04-10T16:35
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N4af90c1ae0af4c3c881e01237eef43b1
    48 schema:url http://link.springer.com/10.1007/s10851-011-0276-0
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0070836f411c479c97a223fc8467e27f rdf:first sg:person.015047625133.33
    53 rdf:rest N3b27a5e242304b58bb8f076b45f4fb3d
    54 N1b8284dd09704b57a140fb794b0b5490 rdf:first sg:person.010152674017.51
    55 rdf:rest Nce26dec80677406f8e44300510491af2
    56 N3b27a5e242304b58bb8f076b45f4fb3d rdf:first sg:person.011511514573.62
    57 rdf:rest rdf:nil
    58 N4af90c1ae0af4c3c881e01237eef43b1 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N58f2c417c2614c4b9771e0f2853d0cdb rdf:first sg:person.0713261565.63
    61 rdf:rest N0070836f411c479c97a223fc8467e27f
    62 N831a3dfa340b412ea9eb4c6178fce914 schema:name readcube_id
    63 schema:value 04ecf51954acdbdcd80d0fc3e6c3391e48a472ba3215685f4429147b9373a3f3
    64 rdf:type schema:PropertyValue
    65 N86bafbcf65b44c62810f7471b4535080 schema:name doi
    66 schema:value 10.1007/s10851-011-0276-0
    67 rdf:type schema:PropertyValue
    68 Naa66ac29b4b54d578886bf737607658e schema:volumeNumber 42
    69 rdf:type schema:PublicationVolume
    70 Nbb4debf92be947a6b2b4794573934b2f schema:name dimensions_id
    71 schema:value pub.1001033760
    72 rdf:type schema:PropertyValue
    73 Nce26dec80677406f8e44300510491af2 rdf:first sg:person.016072607151.88
    74 rdf:rest N58f2c417c2614c4b9771e0f2853d0cdb
    75 Nd3cbeee81e9d47209117db287156a79c schema:issueNumber 2-3
    76 rdf:type schema:PublicationIssue
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1041815 schema:issn 0924-9907
    84 1573-7683
    85 schema:name Journal of Mathematical Imaging and Vision
    86 rdf:type schema:Periodical
    87 sg:person.010152674017.51 schema:affiliation https://www.grid.ac/institutes/grid.8393.1
    88 schema:familyName Plaza
    89 schema:givenName Javier
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152674017.51
    91 rdf:type schema:Person
    92 sg:person.011511514573.62 schema:affiliation https://www.grid.ac/institutes/grid.8393.1
    93 schema:familyName Plaza
    94 schema:givenName Antonio
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511514573.62
    96 rdf:type schema:Person
    97 sg:person.015047625133.33 schema:affiliation https://www.grid.ac/institutes/grid.8393.1
    98 schema:familyName Martín
    99 schema:givenName Gabriel
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047625133.33
    101 rdf:type schema:Person
    102 sg:person.016072607151.88 schema:affiliation https://www.grid.ac/institutes/grid.10215.37
    103 schema:familyName Hendrix
    104 schema:givenName Eligius M. T.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016072607151.88
    106 rdf:type schema:Person
    107 sg:person.0713261565.63 schema:affiliation https://www.grid.ac/institutes/grid.10215.37
    108 schema:familyName García
    109 schema:givenName Inmaculada
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713261565.63
    111 rdf:type schema:Person
    112 sg:pub.10.1007/978-3-642-13803-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015846327
    113 https://doi.org/10.1007/978-3-642-13803-4_9
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.ins.2010.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027207267
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.neucom.2008.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022450875
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.patcog.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403027
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0034-4257(98)00064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035457258
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1029/2002je001847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851731
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/36.297973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161040
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/36.298007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161067
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/36.3001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161095
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/79.974727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232100
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/igarss.2008.4779330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094353457
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/lgrs.2009.2025520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358876
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/taes.2003.1261124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061484495
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tgrs.2002.802494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608621
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tgrs.2003.819189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609049
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tgrs.2003.820314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609065
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tgrs.2004.835299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609252
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tgrs.2005.844293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609414
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tgrs.2006.888466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610053
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tgrs.2008.918089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610847
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tsp.2009.2025802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061801747
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/whispers.2009.5289072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093992843
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1126/science.228.4704.1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062530321
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1364/ao.47.000f77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065122808
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.10215.37 schema:alternateName University of Malaga
    164 schema:name Department of Computer Architecture, University of Málaga, 29071, Málaga, Spain
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.8393.1 schema:alternateName University of Extremadura
    167 schema:name Hyperspectral Computing Laboratory, Dept. Technology of Computers and Communications, University of Extremadura, Avda. de la Universidad s/n, 10071, Caceres, Spain
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...