Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Fethi Smach, Cedric Lemaître, Jean-Paul Gauthier, Johel Miteran, Mohamed Atri

ABSTRACT

This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration. More... »

PAGES

43-71

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1963. Abstract Harmonic Analysis in NONE
  • 1993-03. Image analysis by wavelet-type transforms: Group theoretic approach in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2004-08. Matching Widely Separated Views Based on Affine Invariant Regions in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2004. An Affine Invariant Salient Region Detector in COMPUTER VISION - ECCV 2004
  • 2004-10. Scale & Affine Invariant Interest Point Detectors in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1970. Dualität Iokalkompakter Gruppen in NONE
  • 1995-01. Visual learning and recognition of 3-d objects from appearance in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2002-11. A Group-Theoretic Construction with Spatiotemporal Wavelets for the Analysis of Rotational Motion in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 1990. Group-Theoretical Methods in Image Understanding in NONE
  • 1991. An introduction to Tannaka duality and quantum groups in CATEGORY THEORY
  • 2005. Recent Progress and Applications in Group FFTs in COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS
  • 1990. Wavelet Transforms Associated to the n-Dimensional Euclidean Group with Dilations: Signal in More Than One Dimension in WAVELETS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10851-007-0036-3

    DOI

    http://dx.doi.org/10.1007/s10851-007-0036-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037308766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "CES Laboratory, ENIS, University of Sfax, Sfax, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smach", 
            "givenName": "Fethi", 
            "id": "sg:person.07750776162.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750776162.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, UMR CNRS 5158, University of Burgundy, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lema\u00eetre", 
            "givenName": "Cedric", 
            "id": "sg:person.014742406457.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742406457.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, UMR CNRS 5158, University of Burgundy, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gauthier", 
            "givenName": "Jean-Paul", 
            "id": "sg:person.010301262074.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301262074.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, UMR CNRS 5158, University of Burgundy, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miteran", 
            "givenName": "Johel", 
            "id": "sg:person.012627671575.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627671575.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory of Electronics (E\u03bcE), FSM, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Atri", 
            "givenName": "Mohamed", 
            "id": "sg:person.012173542323.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173542323.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0004-3702(89)90066-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008277141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(89)90066-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008277141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000020671.28016.e8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009661627", 
              "https://doi.org/10.1023/b:visi.0000020671.28016.e8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61275-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011755495", 
              "https://doi.org/10.1007/978-3-642-61275-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61275-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011755495", 
              "https://doi.org/10.1007/978-3-642-61275-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(95)00011-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014690078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/acha.2000.0321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017183212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(02)00353-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018691872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01421486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275860", 
              "https://doi.org/10.1007/bf01421486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01421486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275860", 
              "https://doi.org/10.1007/bf01421486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1999.0745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020354592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1020415117", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00102-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020415117", 
              "https://doi.org/10.1007/978-3-662-00102-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00102-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020415117", 
              "https://doi.org/10.1007/978-3-662-00102-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-2307-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020949447", 
              "https://doi.org/10.1007/1-4020-2307-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000027790.02288.f2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024638466", 
              "https://doi.org/10.1023/b:visi.0000027790.02288.f2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0069778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025288822", 
              "https://doi.org/10.1007/bfb0069778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0069778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025288822", 
              "https://doi.org/10.1007/bfb0069778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0084235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029950704", 
              "https://doi.org/10.1007/bfb0084235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90037-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032509378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90037-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032509378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01248403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032770620", 
              "https://doi.org/10.1007/bf01248403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.2001.0921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035337904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/130385.130401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036379424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24670-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041420612", 
              "https://doi.org/10.1007/978-3-540-24670-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24670-1_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041420612", 
              "https://doi.org/10.1007/978-3-540-24670-1_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/jocn.1991.3.1.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043225769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1966-0195988-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046436193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0273-0979-1979-14686-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049360384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-75988-8_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049931023", 
              "https://doi.org/10.1007/978-3-642-75988-8_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020715325630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052063581", 
              "https://doi.org/10.1023/a:1020715325630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.101146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.55109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.598228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.554195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1116025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062866403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144502400961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144502400961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250524377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083510052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2004.1334492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095229611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/3838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098883908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/0352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099037948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.16.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099368997"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01", 
        "datePublishedReg": "2008-01-01", 
        "description": "This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin\u2019s, Tannaka\u2019s, Chu\u2019s and Tatsuuma\u2019s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are \u201ccomplete\u201d in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10851-007-0036-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041815", 
            "issn": [
              "0924-9907", 
              "1573-7683"
            ], 
            "name": "Journal of Mathematical Imaging and Vision", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "name": "Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context", 
        "pagination": "43-71", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10851-007-0036-3"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b1b9f1850c8550892c45dbd77738090e5601cee53b655383e94903db75364858"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037308766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10851-007-0036-3", 
          "https://app.dimensions.ai/details/publication/pub.1037308766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56158_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10851-007-0036-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10851-007-0036-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10851-007-0036-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10851-007-0036-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10851-007-0036-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10851-007-0036-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6a5fb4fc5cde4895b2cf2a78aa333345
    4 schema:citation sg:pub.10.1007/1-4020-2307-3_9
    5 sg:pub.10.1007/978-3-540-24670-1_18
    6 sg:pub.10.1007/978-3-642-61275-6
    7 sg:pub.10.1007/978-3-642-75988-8_22
    8 sg:pub.10.1007/978-3-662-00102-8
    9 sg:pub.10.1007/bf01248403
    10 sg:pub.10.1007/bf01421486
    11 sg:pub.10.1007/bfb0069778
    12 sg:pub.10.1007/bfb0084235
    13 sg:pub.10.1023/a:1020715325630
    14 sg:pub.10.1023/b:visi.0000020671.28016.e8
    15 sg:pub.10.1023/b:visi.0000027790.02288.f2
    16 sg:pub.10.1023/b:visi.0000029664.99615.94
    17 https://app.dimensions.ai/details/publication/pub.1020415117
    18 https://doi.org/10.1006/acha.2000.0321
    19 https://doi.org/10.1006/cviu.1999.0745
    20 https://doi.org/10.1006/cviu.2001.0921
    21 https://doi.org/10.1016/0004-3702(89)90066-0
    22 https://doi.org/10.1016/0031-3203(95)00011-n
    23 https://doi.org/10.1016/0167-8655(94)90037-x
    24 https://doi.org/10.1016/s0031-3203(02)00353-9
    25 https://doi.org/10.1090/s0002-9947-1966-0195988-5
    26 https://doi.org/10.1090/s0273-0979-1979-14686-x
    27 https://doi.org/10.1109/21.101146
    28 https://doi.org/10.1109/34.55109
    29 https://doi.org/10.1109/34.598228
    30 https://doi.org/10.1109/72.554195
    31 https://doi.org/10.1109/icpr.2004.1334492
    32 https://doi.org/10.1137/1116025
    33 https://doi.org/10.1137/s0036144502400961
    34 https://doi.org/10.1142/0352
    35 https://doi.org/10.1142/3838
    36 https://doi.org/10.1145/130385.130401
    37 https://doi.org/10.1162/jocn.1991.3.1.71
    38 https://doi.org/10.1215/kjm/1250524377
    39 https://doi.org/10.5244/c.16.36
    40 schema:datePublished 2008-01
    41 schema:datePublishedReg 2008-01-01
    42 schema:description This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N31ce5966f58e46b69da0b5e1fde866fa
    47 N54c6f847b91b4f608aa51efd2ecaf75d
    48 sg:journal.1041815
    49 schema:name Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context
    50 schema:pagination 43-71
    51 schema:productId N49a9bdbbefa84f038e35cfb201824602
    52 N68a6680e904f4e3289f8efe655e010f7
    53 Nd31c4dc6ebae4dadb789aaf6b3405440
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308766
    55 https://doi.org/10.1007/s10851-007-0036-3
    56 schema:sdDatePublished 2019-04-15T09:11
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N296388db40ef41e7b7851f6bdcba80ac
    59 schema:url http://link.springer.com/10.1007%2Fs10851-007-0036-3
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N296388db40ef41e7b7851f6bdcba80ac schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N31ce5966f58e46b69da0b5e1fde866fa schema:volumeNumber 30
    66 rdf:type schema:PublicationVolume
    67 N40e040c4831f43cfa08d47d95542e0a6 schema:name CES Laboratory, ENIS, University of Sfax, Sfax, Tunisia
    68 rdf:type schema:Organization
    69 N49a9bdbbefa84f038e35cfb201824602 schema:name doi
    70 schema:value 10.1007/s10851-007-0036-3
    71 rdf:type schema:PropertyValue
    72 N54c6f847b91b4f608aa51efd2ecaf75d schema:issueNumber 1
    73 rdf:type schema:PublicationIssue
    74 N6482c2abd1df4369b4bd0062135dfbcd rdf:first sg:person.012627671575.44
    75 rdf:rest N91bcc9c5e53b4f48b66ef21e3aef8c5a
    76 N68a6680e904f4e3289f8efe655e010f7 schema:name readcube_id
    77 schema:value b1b9f1850c8550892c45dbd77738090e5601cee53b655383e94903db75364858
    78 rdf:type schema:PropertyValue
    79 N6a5fb4fc5cde4895b2cf2a78aa333345 rdf:first sg:person.07750776162.62
    80 rdf:rest Nf55407e03abb4913a06c382960750ade
    81 N91bcc9c5e53b4f48b66ef21e3aef8c5a rdf:first sg:person.012173542323.27
    82 rdf:rest rdf:nil
    83 N935fd13145154086bdc9e4462bb85d65 rdf:first sg:person.010301262074.33
    84 rdf:rest N6482c2abd1df4369b4bd0062135dfbcd
    85 Nd2aadc2554b44d0aa326b5aa212ec285 schema:name Laboratory of Electronics (EμE), FSM, Monastir, Tunisia
    86 rdf:type schema:Organization
    87 Nd31c4dc6ebae4dadb789aaf6b3405440 schema:name dimensions_id
    88 schema:value pub.1037308766
    89 rdf:type schema:PropertyValue
    90 Nf55407e03abb4913a06c382960750ade rdf:first sg:person.014742406457.68
    91 rdf:rest N935fd13145154086bdc9e4462bb85d65
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Artificial Intelligence and Image Processing
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1041815 schema:issn 0924-9907
    99 1573-7683
    100 schema:name Journal of Mathematical Imaging and Vision
    101 rdf:type schema:Periodical
    102 sg:person.010301262074.33 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    103 schema:familyName Gauthier
    104 schema:givenName Jean-Paul
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301262074.33
    106 rdf:type schema:Person
    107 sg:person.012173542323.27 schema:affiliation Nd2aadc2554b44d0aa326b5aa212ec285
    108 schema:familyName Atri
    109 schema:givenName Mohamed
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173542323.27
    111 rdf:type schema:Person
    112 sg:person.012627671575.44 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    113 schema:familyName Miteran
    114 schema:givenName Johel
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627671575.44
    116 rdf:type schema:Person
    117 sg:person.014742406457.68 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    118 schema:familyName Lemaître
    119 schema:givenName Cedric
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014742406457.68
    121 rdf:type schema:Person
    122 sg:person.07750776162.62 schema:affiliation N40e040c4831f43cfa08d47d95542e0a6
    123 schema:familyName Smach
    124 schema:givenName Fethi
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750776162.62
    126 rdf:type schema:Person
    127 sg:pub.10.1007/1-4020-2307-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020949447
    128 https://doi.org/10.1007/1-4020-2307-3_9
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-540-24670-1_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041420612
    131 https://doi.org/10.1007/978-3-540-24670-1_18
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-61275-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011755495
    134 https://doi.org/10.1007/978-3-642-61275-6
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-642-75988-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049931023
    137 https://doi.org/10.1007/978-3-642-75988-8_22
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-662-00102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020415117
    140 https://doi.org/10.1007/978-3-662-00102-8
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf01248403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032770620
    143 https://doi.org/10.1007/bf01248403
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf01421486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275860
    146 https://doi.org/10.1007/bf01421486
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bfb0069778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025288822
    149 https://doi.org/10.1007/bfb0069778
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bfb0084235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029950704
    152 https://doi.org/10.1007/bfb0084235
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1023/a:1020715325630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052063581
    155 https://doi.org/10.1023/a:1020715325630
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1023/b:visi.0000020671.28016.e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009661627
    158 https://doi.org/10.1023/b:visi.0000020671.28016.e8
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/b:visi.0000027790.02288.f2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638466
    161 https://doi.org/10.1023/b:visi.0000027790.02288.f2
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    164 https://doi.org/10.1023/b:visi.0000029664.99615.94
    165 rdf:type schema:CreativeWork
    166 https://app.dimensions.ai/details/publication/pub.1020415117 schema:CreativeWork
    167 https://doi.org/10.1006/acha.2000.0321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017183212
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1006/cviu.1999.0745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020354592
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1006/cviu.2001.0921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035337904
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0004-3702(89)90066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008277141
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/0031-3203(95)00011-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1014690078
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/0167-8655(94)90037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032509378
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0031-3203(02)00353-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018691872
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1090/s0002-9947-1966-0195988-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046436193
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1090/s0273-0979-1979-14686-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049360384
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/21.101146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121280
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/34.55109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156497
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1109/34.598228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156617
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/72.554195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218851
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/icpr.2004.1334492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095229611
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1137/1116025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866403
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1137/s0036144502400961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877780
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1142/0352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099037948
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1142/3838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098883908
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1162/jocn.1991.3.1.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043225769
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1215/kjm/1250524377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083510052
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.5244/c.16.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099368997
    210 rdf:type schema:CreativeWork
    211 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
    212 schema:name Le2i, UMR CNRS 5158, University of Burgundy, Dijon, France
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...