Bayesian Model Learning Based on Predictive Entropy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

Jukka Corander, Pekka Marttinen

ABSTRACT

Bayesian paradigm has been widely acknowledged as a coherent approach to learning putative probability model structures from a finite class of candidate models. Bayesian learning is based on measuring the predictive ability of a model in terms of the corresponding marginal data distribution, which equals the expectation of the likelihood with respect to a prior distribution for model parameters. The main controversy related to this learning method stems from the necessity of specifying proper prior distributions for all unknown parameters of a model, which ensures a complete determination of the marginal data distribution. Even for commonly used models, subjective priors may be difficult to specify precisely, and therefore, several automated learning procedures have been suggested in the literature. Here we introduce a novel Bayesian learning method based on the predictive entropy of a probability model, that can combine both subjective and objective probabilistic assessment of uncertain quantities in putative models. It is shown that our approach can avoid some of the limitations of the earlier suggested objective Bayesian methods. More... »

PAGES

5

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10849-005-9004-8

DOI

http://dx.doi.org/10.1007/s10849-005-9004-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003100601


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, 68, FIN-00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corander", 
        "givenName": "Jukka", 
        "id": "sg:person.01125514227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, 68, FIN-00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-4250-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024387799", 
          "https://doi.org/10.1007/978-1-4612-4250-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4250-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024387799", 
          "https://doi.org/10.1007/978-1-4612-4250-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-5823.2002.tb00175.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026193202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/088342304000000026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028449972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00996271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029709081", 
          "https://doi.org/10.1007/bf00996271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-259x(02)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-259x(02)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(00)00172-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049195233", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049195233", 
          "https://doi.org/10.1007/978-1-4757-3071-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049195233", 
          "https://doi.org/10.1007/978-1-4757-3071-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053215283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1989.10478756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1994.10476894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10477003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1999.10474149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/65.1.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/66.2.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/72.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/86.4.785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/89.3.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.481776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2003.820014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061649975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1028144852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069474075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103194915", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "Bayesian paradigm has been widely acknowledged as a coherent approach to learning putative probability model structures from a finite class of candidate models. Bayesian learning is based on measuring the predictive ability of a model in terms of the corresponding marginal data distribution, which equals the expectation of the likelihood with respect to a prior distribution for model parameters. The main controversy related to this learning method stems from the necessity of specifying proper prior distributions for all unknown parameters of a model, which ensures a complete determination of the marginal data distribution. Even for commonly used models, subjective priors may be difficult to specify precisely, and therefore, several automated learning procedures have been suggested in the literature. Here we introduce a novel Bayesian learning method based on the predictive entropy of a probability model, that can combine both subjective and objective probabilistic assessment of uncertain quantities in putative models. It is shown that our approach can avoid some of the limitations of the earlier suggested objective Bayesian methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10849-005-9004-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1132576", 
        "issn": [
          "0925-8531", 
          "1572-9583"
        ], 
        "name": "Journal of Logic, Language and Information", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Bayesian Model Learning Based on Predictive Entropy", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ec50e80d67341cbd89d9bb085f4caa0845396eb2756aa4c2a2f3a2aae81b56d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10849-005-9004-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003100601"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10849-005-9004-8", 
      "https://app.dimensions.ai/details/publication/pub.1003100601"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72835_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10849-005-9004-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10849-005-9004-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10849-005-9004-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10849-005-9004-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10849-005-9004-8'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10849-005-9004-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6f8e1ccf015b45fdb8fa5d3147e0d607
4 schema:citation sg:pub.10.1007/978-1-4612-4250-5
5 sg:pub.10.1007/978-1-4757-3071-5
6 sg:pub.10.1007/bf00996271
7 https://app.dimensions.ai/details/publication/pub.1049195233
8 https://app.dimensions.ai/details/publication/pub.1103194915
9 https://doi.org/10.1016/s0047-259x(02)00033-7
10 https://doi.org/10.1016/s0378-3758(00)00172-5
11 https://doi.org/10.1080/01621459.1989.10478756
12 https://doi.org/10.1080/01621459.1994.10476894
13 https://doi.org/10.1080/01621459.1996.10476668
14 https://doi.org/10.1080/01621459.1996.10477003
15 https://doi.org/10.1080/01621459.1999.10474149
16 https://doi.org/10.1093/biomet/65.1.53
17 https://doi.org/10.1093/biomet/66.2.237
18 https://doi.org/10.1093/biomet/72.1.97
19 https://doi.org/10.1093/biomet/86.4.785
20 https://doi.org/10.1093/biomet/89.3.491
21 https://doi.org/10.1109/18.481776
22 https://doi.org/10.1109/tac.1974.1100705
23 https://doi.org/10.1109/tit.2003.820014
24 https://doi.org/10.1111/1467-9469.00344
25 https://doi.org/10.1111/1467-9868.00353
26 https://doi.org/10.1111/j.1751-5823.2002.tb00175.x
27 https://doi.org/10.1214/088342304000000026
28 https://doi.org/10.1214/aos/1028144852
29 https://doi.org/10.1214/aos/1176344136
30 https://doi.org/10.2307/1403862
31 schema:datePublished 2006-07
32 schema:datePublishedReg 2006-07-01
33 schema:description Bayesian paradigm has been widely acknowledged as a coherent approach to learning putative probability model structures from a finite class of candidate models. Bayesian learning is based on measuring the predictive ability of a model in terms of the corresponding marginal data distribution, which equals the expectation of the likelihood with respect to a prior distribution for model parameters. The main controversy related to this learning method stems from the necessity of specifying proper prior distributions for all unknown parameters of a model, which ensures a complete determination of the marginal data distribution. Even for commonly used models, subjective priors may be difficult to specify precisely, and therefore, several automated learning procedures have been suggested in the literature. Here we introduce a novel Bayesian learning method based on the predictive entropy of a probability model, that can combine both subjective and objective probabilistic assessment of uncertain quantities in putative models. It is shown that our approach can avoid some of the limitations of the earlier suggested objective Bayesian methods.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0b361fb98f594637a2670506b6c31383
38 N7c48e63f0959430ab23fcd22c1956038
39 sg:journal.1132576
40 schema:name Bayesian Model Learning Based on Predictive Entropy
41 schema:pagination 5
42 schema:productId N7af7160b756743dea5505864cf5f53c1
43 Nb3d496a7d3d94cb4ba7c1419fdfa3f22
44 Nd9cc767e869b410e8491aae4e5e83d12
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003100601
46 https://doi.org/10.1007/s10849-005-9004-8
47 schema:sdDatePublished 2019-04-11T12:52
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1f963e0be36c40818d4b20c07974f0fc
50 schema:url http://link.springer.com/10.1007/s10849-005-9004-8
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0b361fb98f594637a2670506b6c31383 schema:volumeNumber 15
55 rdf:type schema:PublicationVolume
56 N1f963e0be36c40818d4b20c07974f0fc schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N6f8e1ccf015b45fdb8fa5d3147e0d607 rdf:first sg:person.01125514227.61
59 rdf:rest N7917aa266fb940909ba557591a53f097
60 N7917aa266fb940909ba557591a53f097 rdf:first sg:person.0753733617.28
61 rdf:rest rdf:nil
62 N7af7160b756743dea5505864cf5f53c1 schema:name dimensions_id
63 schema:value pub.1003100601
64 rdf:type schema:PropertyValue
65 N7c48e63f0959430ab23fcd22c1956038 schema:issueNumber 1-2
66 rdf:type schema:PublicationIssue
67 Nb3d496a7d3d94cb4ba7c1419fdfa3f22 schema:name readcube_id
68 schema:value 0ec50e80d67341cbd89d9bb085f4caa0845396eb2756aa4c2a2f3a2aae81b56d
69 rdf:type schema:PropertyValue
70 Nd9cc767e869b410e8491aae4e5e83d12 schema:name doi
71 schema:value 10.1007/s10849-005-9004-8
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:journal.1132576 schema:issn 0925-8531
80 1572-9583
81 schema:name Journal of Logic, Language and Information
82 rdf:type schema:Periodical
83 sg:person.01125514227.61 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
84 schema:familyName Corander
85 schema:givenName Jukka
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61
87 rdf:type schema:Person
88 sg:person.0753733617.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
89 schema:familyName Marttinen
90 schema:givenName Pekka
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-4250-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387799
94 https://doi.org/10.1007/978-1-4612-4250-5
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-1-4757-3071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049195233
97 https://doi.org/10.1007/978-1-4757-3071-5
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00996271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709081
100 https://doi.org/10.1007/bf00996271
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1049195233 schema:CreativeWork
103 https://app.dimensions.ai/details/publication/pub.1103194915 schema:CreativeWork
104 https://doi.org/10.1016/s0047-259x(02)00033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038165512
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0378-3758(00)00172-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045440239
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/01621459.1989.10478756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303733
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/01621459.1994.10476894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304758
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/01621459.1996.10476668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304951
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/01621459.1996.10477003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305137
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/01621459.1999.10474149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305598
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1093/biomet/65.1.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418734
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1093/biomet/66.2.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418849
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/biomet/72.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419502
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/biomet/86.4.785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420965
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/biomet/89.3.491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421188
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/18.481776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099807
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tit.2003.820014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649975
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/1467-9469.00344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053215283
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1751-5823.2002.tb00175.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026193202
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1214/088342304000000026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028449972
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1214/aos/1028144852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406113
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2307/1403862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069474075
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
149 schema:name Department of Mathematics and Statistics, University of Helsinki, 68, FIN-00014, Helsinki, Finland
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...