Accurate and Robust Vanishing Point Detection Method in Unstructured Road Scenes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jiaming Han, Zhong Yang, Guoxiong Hu, Tianyi Zhang, Jiarong Song

ABSTRACT

Vanishing point detection is an essential component of vision-based autonomous navigation for unmanned ground vehicles and mobile robots. In this paper, we propose an accurate and robust vanishing point detection method for unstructured road scenes, where the road scenes lack clear road markings and include complex background interference. Since only the road region provides informative clues for vanishing point detection, we first introduce the manifold ranking method to estimate the road region based on background suppression. Then, we develop a series of principles for voter selection, and propose a dynamic adjustment strategy for the candidate selection that reduces the search scope of the vanishing point to perform candidate selection. Finally, we propose an effective voting strategy, in which the candidate that achieves the greatest number of votes in the voting space is considered to be the vanishing point. The experimental results on a large number of unstructured road images show that our proposed method is more accurate and robust than five existing methods. More... »

PAGES

143-158

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10846-018-0814-8

DOI

http://dx.doi.org/10.1007/s10846-018-0814-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103400419


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Jiaming", 
        "id": "sg:person.011375776426.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375776426.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhong", 
        "id": "sg:person.012166544200.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166544200.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangxi Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411862.8", 
          "name": [
            "College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China", 
            "College of Software, Jiangxi Normal University, 330022, Nanchang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Guoxiong", 
        "id": "sg:person.011371163600.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371163600.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tianyi", 
        "id": "sg:person.013566320026.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566320026.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Jiarong", 
        "id": "sg:person.014363700426.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014363700426.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s16070948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019747238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023739842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2016.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51969-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054073183", 
          "https://doi.org/10.1007/978-3-319-51969-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cvi.2015.0390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056825494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2016.0068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.541406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2011.2162422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2010.2076349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2012.2216878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2015.2490556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2477537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2016.2616490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3788/aos201434.0715001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071391848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2017.2679222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084206642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2017.2705103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086007062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2017.2720684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090784182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13319-017-0139-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091100658", 
          "https://doi.org/10.1007/s13319-017-0139-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13319-017-0139-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091100658", 
          "https://doi.org/10.1007/s13319-017-0139-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15406/iratj.2017.02.00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092467758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dicta.2016.7797037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093199923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093603006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093698008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2014.6957672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094093042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094757808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095429683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/anti-cybercrime.2017.7905284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095632074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2012.6225206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095714017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7952477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095991401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7952477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095991401"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Vanishing point detection is an essential component of vision-based autonomous navigation for unmanned ground vehicles and mobile robots. In this paper, we propose an accurate and robust vanishing point detection method for unstructured road scenes, where the road scenes lack clear road markings and include complex background interference. Since only the road region provides informative clues for vanishing point detection, we first introduce the manifold ranking method to estimate the road region based on background suppression. Then, we develop a series of principles for voter selection, and propose a dynamic adjustment strategy for the candidate selection that reduces the search scope of the vanishing point to perform candidate selection. Finally, we propose an effective voting strategy, in which the candidate that achieves the greatest number of votes in the voting space is considered to be the vanishing point. The experimental results on a large number of unstructured road images show that our proposed method is more accurate and robust than five existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10846-018-0814-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135942", 
        "issn": [
          "0921-0296", 
          "1573-0409"
        ], 
        "name": "Journal of Intelligent & Robotic Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Accurate and Robust Vanishing Point Detection Method in Unstructured Road Scenes", 
    "pagination": "143-158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c63eb671a6c5f53eb87553c7725697e7fd08e24506ee64e0decb7ad673081c9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10846-018-0814-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103400419"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10846-018-0814-8", 
      "https://app.dimensions.ai/details/publication/pub.1103400419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53998_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10846-018-0814-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10846-018-0814-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10846-018-0814-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10846-018-0814-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10846-018-0814-8'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10846-018-0814-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N36415741789a4a6d85402c6dd9e16f4f
4 schema:citation sg:pub.10.1007/978-3-319-51969-2_1
5 sg:pub.10.1007/s13319-017-0139-6
6 https://doi.org/10.1016/j.cviu.2016.01.011
7 https://doi.org/10.1016/j.robot.2016.08.003
8 https://doi.org/10.1049/iet-cvi.2015.0390
9 https://doi.org/10.1049/iet-ipr.2016.0068
10 https://doi.org/10.1109/34.541406
11 https://doi.org/10.1109/anti-cybercrime.2017.7905284
12 https://doi.org/10.1109/cvpr.2010.5539970
13 https://doi.org/10.1109/cvpr.2015.7298859
14 https://doi.org/10.1109/dicta.2016.7797037
15 https://doi.org/10.1109/icassp.2017.7952477
16 https://doi.org/10.1109/icip.2014.7025200
17 https://doi.org/10.1109/icpr.2014.181
18 https://doi.org/10.1109/icra.2012.6225206
19 https://doi.org/10.1109/itsc.2014.6957672
20 https://doi.org/10.1109/lgrs.2017.2720684
21 https://doi.org/10.1109/tip.2011.2162422
22 https://doi.org/10.1109/tits.2010.2076349
23 https://doi.org/10.1109/tits.2012.2216878
24 https://doi.org/10.1109/tits.2015.2490556
25 https://doi.org/10.1109/tits.2017.2679222
26 https://doi.org/10.1109/tnnls.2015.2477537
27 https://doi.org/10.1109/tro.2017.2705103
28 https://doi.org/10.1109/tsmc.2016.2616490
29 https://doi.org/10.15406/iratj.2017.02.00023
30 https://doi.org/10.3390/s16070948
31 https://doi.org/10.3788/aos201434.0715001
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description Vanishing point detection is an essential component of vision-based autonomous navigation for unmanned ground vehicles and mobile robots. In this paper, we propose an accurate and robust vanishing point detection method for unstructured road scenes, where the road scenes lack clear road markings and include complex background interference. Since only the road region provides informative clues for vanishing point detection, we first introduce the manifold ranking method to estimate the road region based on background suppression. Then, we develop a series of principles for voter selection, and propose a dynamic adjustment strategy for the candidate selection that reduces the search scope of the vanishing point to perform candidate selection. Finally, we propose an effective voting strategy, in which the candidate that achieves the greatest number of votes in the voting space is considered to be the vanishing point. The experimental results on a large number of unstructured road images show that our proposed method is more accurate and robust than five existing methods.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N871d6f8aab0f432d8c76f612b251fcea
39 N8ac1647554fa48c4a557921c492f988c
40 sg:journal.1135942
41 schema:name Accurate and Robust Vanishing Point Detection Method in Unstructured Road Scenes
42 schema:pagination 143-158
43 schema:productId N1645bf37f970432ea204357ef4d5ed98
44 N2c14df9295054383bbad046896370934
45 N947a5ad2832f48a990dc5c0852ca9e9e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103400419
47 https://doi.org/10.1007/s10846-018-0814-8
48 schema:sdDatePublished 2019-04-11T12:13
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nefbc2ed8667447a8b320e53ea0bf1b01
51 schema:url https://link.springer.com/10.1007%2Fs10846-018-0814-8
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1645bf37f970432ea204357ef4d5ed98 schema:name dimensions_id
56 schema:value pub.1103400419
57 rdf:type schema:PropertyValue
58 N2c14df9295054383bbad046896370934 schema:name doi
59 schema:value 10.1007/s10846-018-0814-8
60 rdf:type schema:PropertyValue
61 N33c2939bb9f2472fabfb73d3c872c65e rdf:first sg:person.014363700426.53
62 rdf:rest rdf:nil
63 N36415741789a4a6d85402c6dd9e16f4f rdf:first sg:person.011375776426.42
64 rdf:rest N78f4e90623b946e994547faa4d8b44c7
65 N4b470d9907f54633ae02ffcd41314937 rdf:first sg:person.011371163600.15
66 rdf:rest Nad4952c065654239b5d26e43449702a8
67 N78f4e90623b946e994547faa4d8b44c7 rdf:first sg:person.012166544200.05
68 rdf:rest N4b470d9907f54633ae02ffcd41314937
69 N871d6f8aab0f432d8c76f612b251fcea schema:volumeNumber 94
70 rdf:type schema:PublicationVolume
71 N8ac1647554fa48c4a557921c492f988c schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N947a5ad2832f48a990dc5c0852ca9e9e schema:name readcube_id
74 schema:value 1c63eb671a6c5f53eb87553c7725697e7fd08e24506ee64e0decb7ad673081c9
75 rdf:type schema:PropertyValue
76 Nad4952c065654239b5d26e43449702a8 rdf:first sg:person.013566320026.82
77 rdf:rest N33c2939bb9f2472fabfb73d3c872c65e
78 Nefbc2ed8667447a8b320e53ea0bf1b01 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1135942 schema:issn 0921-0296
87 1573-0409
88 schema:name Journal of Intelligent & Robotic Systems
89 rdf:type schema:Periodical
90 sg:person.011371163600.15 schema:affiliation https://www.grid.ac/institutes/grid.411862.8
91 schema:familyName Hu
92 schema:givenName Guoxiong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371163600.15
94 rdf:type schema:Person
95 sg:person.011375776426.42 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
96 schema:familyName Han
97 schema:givenName Jiaming
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375776426.42
99 rdf:type schema:Person
100 sg:person.012166544200.05 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
101 schema:familyName Yang
102 schema:givenName Zhong
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166544200.05
104 rdf:type schema:Person
105 sg:person.013566320026.82 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
106 schema:familyName Zhang
107 schema:givenName Tianyi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566320026.82
109 rdf:type schema:Person
110 sg:person.014363700426.53 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
111 schema:familyName Song
112 schema:givenName Jiarong
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014363700426.53
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-319-51969-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054073183
116 https://doi.org/10.1007/978-3-319-51969-2_1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s13319-017-0139-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091100658
119 https://doi.org/10.1007/s13319-017-0139-6
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.cviu.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023739842
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.robot.2016.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345435
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/iet-cvi.2015.0390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056825494
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/iet-ipr.2016.0068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829510
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/34.541406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156457
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/anti-cybercrime.2017.7905284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095632074
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/cvpr.2010.5539970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093603006
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cvpr.2015.7298859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095429683
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/dicta.2016.7797037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093199923
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/icassp.2017.7952477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095991401
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/icip.2014.7025200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093698008
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/icpr.2014.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094757808
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icra.2012.6225206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095714017
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/itsc.2014.6957672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094093042
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/lgrs.2017.2720684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090784182
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tip.2011.2162422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642924
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tits.2010.2076349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657723
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tits.2012.2216878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658048
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tits.2015.2490556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658801
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tits.2017.2679222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084206642
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tnnls.2015.2477537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718969
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tro.2017.2705103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086007062
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tsmc.2016.2616490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794737
166 rdf:type schema:CreativeWork
167 https://doi.org/10.15406/iratj.2017.02.00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092467758
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3390/s16070948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019747238
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3788/aos201434.0715001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071391848
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.411862.8 schema:alternateName Jiangxi Normal University
174 schema:name College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People’s Republic of China
175 College of Software, Jiangxi Normal University, 330022, Nanchang, People’s Republic of China
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
178 schema:name College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People’s Republic of China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...