Simulating a virtual machining model in an agent-based model for advanced analytics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

David Lechevalier, Seung-Jun Shin, Sudarsan Rachuri, Sebti Foufou, Y. Tina Lee, Abdelaziz Bouras

ABSTRACT

Monitoring the performance of manufacturing equipment is critical to ensure the efficiency of manufacturing processes. Machine-monitoring data allows measuring manufacturing equipment efficiency. However, acquiring real and useful machine-monitoring data is expensive and time consuming. An alternative method of getting data is to generate machine-monitoring data using simulation. The simulation data mimic operations and operational failure. In addition, the data can also be used to fill in real data sets with missing values from real-time data collection. The mimicking of real manufacturing systems in computer-based systems is called “virtual manufacturing”. The computer-based systems execute the manufacturing system models that represent real manufacturing systems. In this paper, we introduce a virtual machining model of milling operations. We developed a prototype virtual machining model that represents 3-axis milling operations. This model is a digital mock-up of a real milling machine; it can generate machine-monitoring data from a process plan. The prototype model provides energy consumption data based on physics-based equations. The model uses the standard interfaces of Step-compliant data interface for Numeric Controls and MTConnect to represent process plan and machine-monitoring data, respectively. With machine-monitoring data for a given process plan, manufacturing engineers can anticipate the impact of a modification in their actual manufacturing systems. This paper describes also how the virtual machining model is integrated into an agent-based model in a simulation environment. While facilitating the use of the virtual machining model, the agent-based model also contributes to the generation of more complex manufacturing system models, such as a virtual shop-floor model. The paper describes initial building steps towards a shop-floor model. Aggregating the data generated during the execution of a virtual shop-floor model allows one to take advantage of data analytics techniques to predict performance at the shop-floor level. More... »

PAGES

1937-1955

References to SciGraph publications

  • 2017-04-05. Smart manufacturing must embrace big data in NATURE
  • 2015. Survey on Simulation Methods in Multi-axis Machining in TRANSACTIONS ON ENGINEERING TECHNOLOGIES
  • 1999-11. Imputation of Missing Data in Industrial Databases in APPLIED INTELLIGENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10845-017-1363-x

    DOI

    http://dx.doi.org/10.1007/s10845-017-1363-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091920202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Burgundy", 
              "id": "https://www.grid.ac/institutes/grid.5613.1", 
              "name": [
                "Le2i, Universit\u00e9 de Bourgogne, Dijon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lechevalier", 
            "givenName": "David", 
            "id": "sg:person.011424330445.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424330445.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pukyong National University", 
              "id": "https://www.grid.ac/institutes/grid.412576.3", 
              "name": [
                "Graduate School of Management of Technology, Pukyong National University, Busan, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shin", 
            "givenName": "Seung-Jun", 
            "id": "sg:person.07527076655.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527076655.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Office of Energy Efficiency and Renewable Energy", 
              "id": "https://www.grid.ac/institutes/grid.453003.1", 
              "name": [
                "Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, Department of Energy, Washington, DC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rachuri", 
            "givenName": "Sudarsan", 
            "id": "sg:person.011642636023.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011642636023.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New York University Abu Dhabi", 
              "id": "https://www.grid.ac/institutes/grid.440573.1", 
              "name": [
                "Le2i, Universit\u00e9 de Bourgogne, Dijon, France", 
                "New York University Abu Dhabi, Computer Science, Room A2-191, P.O. Box 129188, Abu Dhabi, United Arab Emirates"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foufou", 
            "givenName": "Sebti", 
            "id": "sg:person.0724667223.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724667223.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Y. Tina", 
            "id": "sg:person.0655445545.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655445545.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qatar University", 
              "id": "https://www.grid.ac/institutes/grid.412603.2", 
              "name": [
                "CSE Department, College of Engineering, Qatar University, Doha, Qatar"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouras", 
            "givenName": "Abdelaziz", 
            "id": "sg:person.07673033036.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673033036.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cirp.2015.04.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008226675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2015.12.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008315821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0951192x.2011.566283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010687028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compind.2009.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015896609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rcim.2012.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016040585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.571333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016075232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2010.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024361541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008334909089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025036430", 
              "https://doi.org/10.1023/a:1008334909089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09511920600622056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029409314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.04.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036079047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207543.2015.1064182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036543854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9804-4_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038789291", 
              "https://doi.org/10.1007/978-94-017-9804-4_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2487575.2506178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048578203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajeassp.2015.223.232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071457632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/544023a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084127587", 
              "https://doi.org/10.1038/544023a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdata.2014.7004332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093517826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wsc.2015.7408333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093536324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wsc.2009.5429674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093569774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/hicss.2016.488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094644852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pacificvis.2011.5742386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094749206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wsc.2014.7019949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094949439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wsc.2015.7408215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095289620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2013-oct-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105739427"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Monitoring the performance of manufacturing equipment is critical to ensure the efficiency of manufacturing processes. Machine-monitoring data allows measuring manufacturing equipment efficiency. However, acquiring real and useful machine-monitoring data is expensive and time consuming. An alternative method of getting data is to generate machine-monitoring data using simulation. The simulation data mimic operations and operational failure. In addition, the data can also be used to fill in real data sets with missing values from real-time data collection. The mimicking of real manufacturing systems in computer-based systems is called \u201cvirtual manufacturing\u201d. The computer-based systems execute the manufacturing system models that represent real manufacturing systems. In this paper, we introduce a virtual machining model of milling operations. We developed a prototype virtual machining model that represents 3-axis milling operations. This model is a digital mock-up of a real milling machine; it can generate machine-monitoring data from a process plan. The prototype model provides energy consumption data based on physics-based equations. The model uses the standard interfaces of Step-compliant data interface for Numeric Controls and MTConnect to represent process plan and machine-monitoring data, respectively. With machine-monitoring data for a given process plan, manufacturing engineers can anticipate the impact of a modification in their actual manufacturing systems. This paper describes also how the virtual machining model is integrated into an agent-based model in a simulation environment. While facilitating the use of the virtual machining model, the agent-based model also contributes to the generation of more complex manufacturing system models, such as a virtual shop-floor model. The paper describes initial building steps towards a shop-floor model. Aggregating the data generated during the execution of a virtual shop-floor model allows one to take advantage of data analytics techniques to predict performance at the shop-floor level.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10845-017-1363-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043477", 
            "issn": [
              "0956-5515", 
              "1572-8145"
            ], 
            "name": "Journal of Intelligent Manufacturing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "name": "Simulating a virtual machining model in an agent-based model for advanced analytics", 
        "pagination": "1937-1955", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "be367ae91e37420eaebf1860444bbd4097b3907f53f318716cec495eee3f303f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10845-017-1363-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091920202"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10845-017-1363-x", 
          "https://app.dimensions.ai/details/publication/pub.1091920202"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10845-017-1363-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10845-017-1363-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10845-017-1363-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10845-017-1363-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10845-017-1363-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10845-017-1363-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0836a795cefb433d81b05c2986f6dc53
    4 schema:citation sg:pub.10.1007/978-94-017-9804-4_25
    5 sg:pub.10.1023/a:1008334909089
    6 sg:pub.10.1038/544023a
    7 https://doi.org/10.1016/j.cirp.2015.04.121
    8 https://doi.org/10.1016/j.compind.2009.05.009
    9 https://doi.org/10.1016/j.eswa.2013.04.013
    10 https://doi.org/10.1016/j.jclepro.2010.10.010
    11 https://doi.org/10.1016/j.procir.2015.12.063
    12 https://doi.org/10.1016/j.rcim.2012.04.008
    13 https://doi.org/10.1080/00207543.2015.1064182
    14 https://doi.org/10.1080/09511920600622056
    15 https://doi.org/10.1080/0951192x.2011.566283
    16 https://doi.org/10.1109/bigdata.2014.7004332
    17 https://doi.org/10.1109/hicss.2016.488
    18 https://doi.org/10.1109/pacificvis.2011.5742386
    19 https://doi.org/10.1109/wsc.2009.5429674
    20 https://doi.org/10.1109/wsc.2014.7019949
    21 https://doi.org/10.1109/wsc.2015.7408215
    22 https://doi.org/10.1109/wsc.2015.7408333
    23 https://doi.org/10.1115/1.2013-oct-1
    24 https://doi.org/10.1117/12.571333
    25 https://doi.org/10.1145/2487575.2506178
    26 https://doi.org/10.3844/ajeassp.2015.223.232
    27 schema:datePublished 2019-04
    28 schema:datePublishedReg 2019-04-01
    29 schema:description Monitoring the performance of manufacturing equipment is critical to ensure the efficiency of manufacturing processes. Machine-monitoring data allows measuring manufacturing equipment efficiency. However, acquiring real and useful machine-monitoring data is expensive and time consuming. An alternative method of getting data is to generate machine-monitoring data using simulation. The simulation data mimic operations and operational failure. In addition, the data can also be used to fill in real data sets with missing values from real-time data collection. The mimicking of real manufacturing systems in computer-based systems is called “virtual manufacturing”. The computer-based systems execute the manufacturing system models that represent real manufacturing systems. In this paper, we introduce a virtual machining model of milling operations. We developed a prototype virtual machining model that represents 3-axis milling operations. This model is a digital mock-up of a real milling machine; it can generate machine-monitoring data from a process plan. The prototype model provides energy consumption data based on physics-based equations. The model uses the standard interfaces of Step-compliant data interface for Numeric Controls and MTConnect to represent process plan and machine-monitoring data, respectively. With machine-monitoring data for a given process plan, manufacturing engineers can anticipate the impact of a modification in their actual manufacturing systems. This paper describes also how the virtual machining model is integrated into an agent-based model in a simulation environment. While facilitating the use of the virtual machining model, the agent-based model also contributes to the generation of more complex manufacturing system models, such as a virtual shop-floor model. The paper describes initial building steps towards a shop-floor model. Aggregating the data generated during the execution of a virtual shop-floor model allows one to take advantage of data analytics techniques to predict performance at the shop-floor level.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N5ba83fc2640c443daf13f56e76451e7d
    34 Na8a7a6d5868b43b3b0569e170f6d308c
    35 sg:journal.1043477
    36 schema:name Simulating a virtual machining model in an agent-based model for advanced analytics
    37 schema:pagination 1937-1955
    38 schema:productId N539a8269e68a47039fb9445c1aeca8a5
    39 Nc8052844307649559aea52bd2249dd00
    40 Ne9eb7c1329aa4caaac67cb23ef699fb5
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091920202
    42 https://doi.org/10.1007/s10845-017-1363-x
    43 schema:sdDatePublished 2019-04-11T12:26
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Na3fc127c0f4c40ef9428fdb1d21238f5
    46 schema:url https://link.springer.com/10.1007%2Fs10845-017-1363-x
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0836a795cefb433d81b05c2986f6dc53 rdf:first sg:person.011424330445.33
    51 rdf:rest Nd2855c33da574fe8ad29783d52d27db5
    52 N4b1b80a01ebc47ce90cc11a9c2c676b2 rdf:first sg:person.07673033036.75
    53 rdf:rest rdf:nil
    54 N4ba65a1f7ad44ac09cad7bbd8340202e rdf:first sg:person.011642636023.06
    55 rdf:rest Na43fe5002eca4bc89bf9627bfc296caf
    56 N539a8269e68a47039fb9445c1aeca8a5 schema:name dimensions_id
    57 schema:value pub.1091920202
    58 rdf:type schema:PropertyValue
    59 N5ba83fc2640c443daf13f56e76451e7d schema:issueNumber 4
    60 rdf:type schema:PublicationIssue
    61 Na3fc127c0f4c40ef9428fdb1d21238f5 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Na43fe5002eca4bc89bf9627bfc296caf rdf:first sg:person.0724667223.49
    64 rdf:rest Nf1d13e2d19d94b87af2f5882b8619944
    65 Na8a7a6d5868b43b3b0569e170f6d308c schema:volumeNumber 30
    66 rdf:type schema:PublicationVolume
    67 Nc8052844307649559aea52bd2249dd00 schema:name readcube_id
    68 schema:value be367ae91e37420eaebf1860444bbd4097b3907f53f318716cec495eee3f303f
    69 rdf:type schema:PropertyValue
    70 Nd2855c33da574fe8ad29783d52d27db5 rdf:first sg:person.07527076655.07
    71 rdf:rest N4ba65a1f7ad44ac09cad7bbd8340202e
    72 Ne9eb7c1329aa4caaac67cb23ef699fb5 schema:name doi
    73 schema:value 10.1007/s10845-017-1363-x
    74 rdf:type schema:PropertyValue
    75 Nf1d13e2d19d94b87af2f5882b8619944 rdf:first sg:person.0655445545.29
    76 rdf:rest N4b1b80a01ebc47ce90cc11a9c2c676b2
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1043477 schema:issn 0956-5515
    84 1572-8145
    85 schema:name Journal of Intelligent Manufacturing
    86 rdf:type schema:Periodical
    87 sg:person.011424330445.33 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
    88 schema:familyName Lechevalier
    89 schema:givenName David
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424330445.33
    91 rdf:type schema:Person
    92 sg:person.011642636023.06 schema:affiliation https://www.grid.ac/institutes/grid.453003.1
    93 schema:familyName Rachuri
    94 schema:givenName Sudarsan
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011642636023.06
    96 rdf:type schema:Person
    97 sg:person.0655445545.29 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    98 schema:familyName Lee
    99 schema:givenName Y. Tina
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655445545.29
    101 rdf:type schema:Person
    102 sg:person.0724667223.49 schema:affiliation https://www.grid.ac/institutes/grid.440573.1
    103 schema:familyName Foufou
    104 schema:givenName Sebti
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724667223.49
    106 rdf:type schema:Person
    107 sg:person.07527076655.07 schema:affiliation https://www.grid.ac/institutes/grid.412576.3
    108 schema:familyName Shin
    109 schema:givenName Seung-Jun
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527076655.07
    111 rdf:type schema:Person
    112 sg:person.07673033036.75 schema:affiliation https://www.grid.ac/institutes/grid.412603.2
    113 schema:familyName Bouras
    114 schema:givenName Abdelaziz
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673033036.75
    116 rdf:type schema:Person
    117 sg:pub.10.1007/978-94-017-9804-4_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789291
    118 https://doi.org/10.1007/978-94-017-9804-4_25
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1023/a:1008334909089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025036430
    121 https://doi.org/10.1023/a:1008334909089
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/544023a schema:sameAs https://app.dimensions.ai/details/publication/pub.1084127587
    124 https://doi.org/10.1038/544023a
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.cirp.2015.04.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008226675
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.compind.2009.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015896609
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.eswa.2013.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036079047
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.jclepro.2010.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024361541
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.procir.2015.12.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008315821
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.rcim.2012.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016040585
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/00207543.2015.1064182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036543854
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1080/09511920600622056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029409314
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1080/0951192x.2011.566283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010687028
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/bigdata.2014.7004332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093517826
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/hicss.2016.488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644852
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/pacificvis.2011.5742386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094749206
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/wsc.2009.5429674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093569774
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/wsc.2014.7019949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094949439
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/wsc.2015.7408215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095289620
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/wsc.2015.7408333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093536324
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1115/1.2013-oct-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105739427
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1117/12.571333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016075232
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1145/2487575.2506178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048578203
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3844/ajeassp.2015.223.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071457632
    165 rdf:type schema:CreativeWork
    166 https://www.grid.ac/institutes/grid.412576.3 schema:alternateName Pukyong National University
    167 schema:name Graduate School of Management of Technology, Pukyong National University, Busan, South Korea
    168 rdf:type schema:Organization
    169 https://www.grid.ac/institutes/grid.412603.2 schema:alternateName Qatar University
    170 schema:name CSE Department, College of Engineering, Qatar University, Doha, Qatar
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.440573.1 schema:alternateName New York University Abu Dhabi
    173 schema:name Le2i, Université de Bourgogne, Dijon, France
    174 New York University Abu Dhabi, Computer Science, Room A2-191, P.O. Box 129188, Abu Dhabi, United Arab Emirates
    175 rdf:type schema:Organization
    176 https://www.grid.ac/institutes/grid.453003.1 schema:alternateName Office of Energy Efficiency and Renewable Energy
    177 schema:name Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, Department of Energy, Washington, DC, USA
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
    180 schema:name Le2i, Université de Bourgogne, Dijon, France
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
    183 schema:name Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...