An embedded self-adapting network service framework for networked manufacturing system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Dapeng Tan, Libin Zhang, Qinglin Ai

ABSTRACT

To improve the self-adapting ability and real-time performance of client/server based networked manufacturing system (NMS), this paper introduces the universal plug and play (UPnP), an intelligent network middleware, into networked manufacturing area, and proposes an embedded self-adapting network framework and related service methods. Referring to small world model and scale-free principles, a complex network model oriented to digital manufacturing is set up. Based on the model, an improved entropy vector projection algorithm is proposed to evaluate the network complexity and reveal the evolution regulars. Then, the self-adapting services for NMS are performed by UPnP service-calling and inter-process communication methods. Finally, the case studies and industrial field experiments verify the effectiveness of the proposed service framework. More... »

PAGES

539-556

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10845-016-1265-3

DOI

http://dx.doi.org/10.1007/s10845-016-1265-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022477621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huazhong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Dapeng", 
        "id": "sg:person.012130642732.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Libin", 
        "id": "sg:person.012327327157.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327327157.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ai", 
        "givenName": "Qinglin", 
        "id": "sg:person.012122657672.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012122657672.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000199237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7222-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455027", 
          "https://doi.org/10.1007/s00170-015-7222-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2011.564329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007912101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-012-0697-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009312230", 
          "https://doi.org/10.1007/s10845-012-0697-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0115-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011226531", 
          "https://doi.org/10.1007/s00170-005-0115-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0115-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011226531", 
          "https://doi.org/10.1007/s00170-005-0115-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0115-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011226531", 
          "https://doi.org/10.1007/s00170-005-0115-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0153586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017558274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0153586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017558274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018652605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-8044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020352508", 
          "https://doi.org/10.1007/s00170-015-8044-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.03.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021662638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/234939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023852793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027615861", 
          "https://doi.org/10.1007/s11431-010-4073-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027615861", 
          "https://doi.org/10.1007/s11431-010-4073-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-012-3930-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659039", 
          "https://doi.org/10.1007/s00170-012-3930-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17452751003696916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032112595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001700300054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032316435", 
          "https://doi.org/10.1007/s001700300054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008915208259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036097802", 
          "https://doi.org/10.1023/a:1008915208259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0378-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037115870", 
          "https://doi.org/10.1007/s00170-005-0378-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-0378-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037115870", 
          "https://doi.org/10.1007/s00170-005-0378-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298208", 
          "https://doi.org/10.1016/s1006-706x(09)60001-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1292-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042738942", 
          "https://doi.org/10.1007/s00170-007-1292-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1292-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042738942", 
          "https://doi.org/10.1007/s00170-007-1292-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-013-0735-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045160728", 
          "https://doi.org/10.1007/s10845-013-0735-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.12.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045750312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-5273(01)00130-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046360356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2011.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050395815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-010-0384-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386625", 
          "https://doi.org/10.1007/s11227-010-0384-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0503-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056529360", 
          "https://doi.org/10.1038/scientificamerican0503-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/26/4/045007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059119886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.974850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.974851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2014.2333472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/te.2012.2212707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061587821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2010.2040563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2010.2050292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2011.2123858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2012.2213559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2013.2262944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2009.2034972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2004.834645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061692067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2009.2036169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061692569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpel.2012.2188043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061758079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.44-47.1115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071949273"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "To improve the self-adapting ability and real-time performance of client/server based networked manufacturing system (NMS), this paper introduces the universal plug and play (UPnP), an intelligent network middleware, into networked manufacturing area, and proposes an embedded self-adapting network framework and related service methods. Referring to small world model and scale-free principles, a complex network model oriented to digital manufacturing is set up. Based on the model, an improved entropy vector projection algorithm is proposed to evaluate the network complexity and reveal the evolution regulars. Then, the self-adapting services for NMS are performed by UPnP service-calling and inter-process communication methods. Finally, the case studies and industrial field experiments verify the effectiveness of the proposed service framework.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10845-016-1265-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7176951", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043477", 
        "issn": [
          "0956-5515", 
          "1572-8145"
        ], 
        "name": "Journal of Intelligent Manufacturing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "An embedded self-adapting network service framework for networked manufacturing system", 
    "pagination": "539-556", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b168fbb65c0bde57ae4827048907dbd492efdbe2f64de8752f89e3654ceb942"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10845-016-1265-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022477621"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10845-016-1265-3", 
      "https://app.dimensions.ai/details/publication/pub.1022477621"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47963_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10845-016-1265-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10845-016-1265-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10845-016-1265-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10845-016-1265-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10845-016-1265-3'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10845-016-1265-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nffae256231064d53b7632cb23b46a9d8
4 schema:citation sg:pub.10.1007/s00170-005-0115-9
5 sg:pub.10.1007/s00170-005-0378-1
6 sg:pub.10.1007/s00170-007-1292-5
7 sg:pub.10.1007/s00170-011-3621-y
8 sg:pub.10.1007/s00170-012-3930-9
9 sg:pub.10.1007/s00170-015-7222-z
10 sg:pub.10.1007/s00170-015-8044-8
11 sg:pub.10.1007/s001700300054
12 sg:pub.10.1007/s10845-012-0697-7
13 sg:pub.10.1007/s10845-013-0735-0
14 sg:pub.10.1007/s11227-010-0384-4
15 sg:pub.10.1007/s11431-010-4046-9
16 sg:pub.10.1007/s11431-010-4073-6
17 sg:pub.10.1016/s1006-706x(09)60001-7
18 sg:pub.10.1023/a:1008915208259
19 sg:pub.10.1038/30918
20 sg:pub.10.1038/scientificamerican0503-60
21 https://doi.org/10.1016/j.apenergy.2014.12.026
22 https://doi.org/10.1016/j.cam.2011.05.026
23 https://doi.org/10.1016/j.neucom.2010.10.012
24 https://doi.org/10.1016/j.neucom.2014.12.115
25 https://doi.org/10.1016/j.physa.2016.03.084
26 https://doi.org/10.1016/j.physrep.2005.10.009
27 https://doi.org/10.1016/j.snb.2014.06.014
28 https://doi.org/10.1016/s0925-5273(01)00130-x
29 https://doi.org/10.1080/00207721.2011.564329
30 https://doi.org/10.1080/17452751003696916
31 https://doi.org/10.1088/0960-1317/26/4/045007
32 https://doi.org/10.1109/3516.974850
33 https://doi.org/10.1109/3516.974851
34 https://doi.org/10.1109/jsen.2014.2333472
35 https://doi.org/10.1109/te.2012.2212707
36 https://doi.org/10.1109/tie.2010.2040563
37 https://doi.org/10.1109/tie.2010.2050292
38 https://doi.org/10.1109/tie.2011.2123858
39 https://doi.org/10.1109/tie.2012.2213559
40 https://doi.org/10.1109/tii.2013.2262944
41 https://doi.org/10.1109/titb.2009.2034972
42 https://doi.org/10.1109/tmech.2004.834645
43 https://doi.org/10.1109/tmech.2009.2036169
44 https://doi.org/10.1109/tpel.2012.2188043
45 https://doi.org/10.1126/science.286.5439.509
46 https://doi.org/10.1155/2013/234939
47 https://doi.org/10.1371/journal.pone.0153586
48 https://doi.org/10.4028/www.scientific.net/amm.44-47.1115
49 schema:datePublished 2019-02
50 schema:datePublishedReg 2019-02-01
51 schema:description To improve the self-adapting ability and real-time performance of client/server based networked manufacturing system (NMS), this paper introduces the universal plug and play (UPnP), an intelligent network middleware, into networked manufacturing area, and proposes an embedded self-adapting network framework and related service methods. Referring to small world model and scale-free principles, a complex network model oriented to digital manufacturing is set up. Based on the model, an improved entropy vector projection algorithm is proposed to evaluate the network complexity and reveal the evolution regulars. Then, the self-adapting services for NMS are performed by UPnP service-calling and inter-process communication methods. Finally, the case studies and industrial field experiments verify the effectiveness of the proposed service framework.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N320f86da74a6406f9555326cf56f7388
56 Nf0de76d4ac5d47bebb02670e8dfd49cd
57 sg:journal.1043477
58 schema:name An embedded self-adapting network service framework for networked manufacturing system
59 schema:pagination 539-556
60 schema:productId N00b2c0ce815840bb90bfd3edb9da08d4
61 N6c4aaa71869c455286c36f8377289bd6
62 Nc43342e1df44460f8e3ec0c4f6ac485f
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022477621
64 https://doi.org/10.1007/s10845-016-1265-3
65 schema:sdDatePublished 2019-04-11T09:09
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N80d840c452ce408f8869527466b0cf70
68 schema:url https://link.springer.com/10.1007%2Fs10845-016-1265-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N00b2c0ce815840bb90bfd3edb9da08d4 schema:name doi
73 schema:value 10.1007/s10845-016-1265-3
74 rdf:type schema:PropertyValue
75 N320f86da74a6406f9555326cf56f7388 schema:issueNumber 2
76 rdf:type schema:PublicationIssue
77 N6c4aaa71869c455286c36f8377289bd6 schema:name dimensions_id
78 schema:value pub.1022477621
79 rdf:type schema:PropertyValue
80 N8002364601504511a01f4267ca453d2b rdf:first sg:person.012122657672.73
81 rdf:rest rdf:nil
82 N80d840c452ce408f8869527466b0cf70 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nb1860a930d9c4f7d90b76323c9c128d9 rdf:first sg:person.012327327157.40
85 rdf:rest N8002364601504511a01f4267ca453d2b
86 Nc43342e1df44460f8e3ec0c4f6ac485f schema:name readcube_id
87 schema:value 6b168fbb65c0bde57ae4827048907dbd492efdbe2f64de8752f89e3654ceb942
88 rdf:type schema:PropertyValue
89 Nf0de76d4ac5d47bebb02670e8dfd49cd schema:volumeNumber 30
90 rdf:type schema:PublicationVolume
91 Nffae256231064d53b7632cb23b46a9d8 rdf:first sg:person.012130642732.30
92 rdf:rest Nb1860a930d9c4f7d90b76323c9c128d9
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:grant.7176951 http://pending.schema.org/fundedItem sg:pub.10.1007/s10845-016-1265-3
100 rdf:type schema:MonetaryGrant
101 sg:journal.1043477 schema:issn 0956-5515
102 1572-8145
103 schema:name Journal of Intelligent Manufacturing
104 rdf:type schema:Periodical
105 sg:person.012122657672.73 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
106 schema:familyName Ai
107 schema:givenName Qinglin
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012122657672.73
109 rdf:type schema:Person
110 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.33199.31
111 schema:familyName Tan
112 schema:givenName Dapeng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
114 rdf:type schema:Person
115 sg:person.012327327157.40 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
116 schema:familyName Zhang
117 schema:givenName Libin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327327157.40
119 rdf:type schema:Person
120 sg:pub.10.1007/s00170-005-0115-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011226531
121 https://doi.org/10.1007/s00170-005-0115-9
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00170-005-0378-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037115870
124 https://doi.org/10.1007/s00170-005-0378-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00170-007-1292-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042738942
127 https://doi.org/10.1007/s00170-007-1292-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00170-011-3621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
130 https://doi.org/10.1007/s00170-011-3621-y
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00170-012-3930-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029659039
133 https://doi.org/10.1007/s00170-012-3930-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00170-015-7222-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005455027
136 https://doi.org/10.1007/s00170-015-7222-z
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00170-015-8044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020352508
139 https://doi.org/10.1007/s00170-015-8044-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s001700300054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032316435
142 https://doi.org/10.1007/s001700300054
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10845-012-0697-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009312230
145 https://doi.org/10.1007/s10845-012-0697-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10845-013-0735-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045160728
148 https://doi.org/10.1007/s10845-013-0735-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11227-010-0384-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051386625
151 https://doi.org/10.1007/s11227-010-0384-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
154 https://doi.org/10.1007/s11431-010-4046-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11431-010-4073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
157 https://doi.org/10.1007/s11431-010-4073-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
160 https://doi.org/10.1016/s1006-706x(09)60001-7
161 rdf:type schema:CreativeWork
162 sg:pub.10.1023/a:1008915208259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036097802
163 https://doi.org/10.1023/a:1008915208259
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
166 https://doi.org/10.1038/30918
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/scientificamerican0503-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056529360
169 https://doi.org/10.1038/scientificamerican0503-60
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.apenergy.2014.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000199237
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.cam.2011.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050395815
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neucom.2010.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715660
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.neucom.2014.12.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045750312
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physa.2016.03.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021662638
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.snb.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652605
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0925-5273(01)00130-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046360356
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/00207721.2011.564329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007912101
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/17452751003696916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032112595
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0960-1317/26/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059119886
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/3516.974850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160575
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/3516.974851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160576
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/jsen.2014.2333472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323330
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/te.2012.2212707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061587821
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tie.2010.2040563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624349
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tie.2010.2050292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624521
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tie.2011.2123858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624927
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tie.2012.2213559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625762
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tii.2013.2262944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632358
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/titb.2009.2034972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656822
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/tmech.2004.834645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692067
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tmech.2009.2036169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692569
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tpel.2012.2188043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061758079
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1155/2013/234939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023852793
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pone.0153586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017558274
224 rdf:type schema:CreativeWork
225 https://doi.org/10.4028/www.scientific.net/amm.44-47.1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071949273
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.33199.31 schema:alternateName Huazhong University of Science and Technology
228 schema:name Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China
229 State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
232 schema:name Key Laboratory of E & M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...