Maintenance scheduling incorporating dynamics of production system and real-time information from workstations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Ali Arab, Napsiah Ismail, Lai Soon Lee

ABSTRACT

In this paper, a new approach to maintenance scheduling for a multi-component production system which takes into account the real-time information from workstations including remaining reliability of equipments as well as work-in-process inventories in each workstation is proposed. To model dynamics of the system, other information like production line configuration, cycle times, buffers’ capacity and mean time to repair of machines are also considered. Using factorial experiment design the problem is formulated to comprehensively monitor the effects of each possible schedule on throughput of the production system. The optimal maintenance schedule is searched by genetic algorithm-based optimization engine implemented in a simulation optimization platform. The proposed approach exploits all of makespans of planning horizon to find the best opportunity to perform maintenance actions on degrading machines in a way that maximizes the system throughput and mitigates the production losses caused by imperfect traditional maintenance strategies. Finally the proposed method is tested in a real production line to magnify the accuracy of proposed scheduling method. The experimental results indicate that the proposed approach guarantees the operational productivity and scheduling efficiency as well. More... »

PAGES

695-705

References to SciGraph publications

  • 2008. Optimal Maintenance of Multi-component Systems: A Review in COMPLEX SYSTEM MAINTENANCE HANDBOOK
  • 1998-10. Scheduling of railway track maintenance activities and crews in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2005-01. Optimizing infrastructure network maintenance when benefits are interdependent in OR SPECTRUM
  • 2006-04. An operating strategy for high-availability multi-station transfer lines in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • 2006-04. Modelling Reliability-Adaptive multi-system operation in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • 2011-08. Periodic and sequential preventive maintenance policies over a finite planning horizon with a dynamic failure law in JOURNAL OF INTELLIGENT MANUFACTURING
  • 2008-02. Maintenance scheduling in manufacturing systems based on predicted machine degradation in JOURNAL OF INTELLIGENT MANUFACTURING
  • 1996-11. A Maintenance Model with Opportunities and Interrupt Replacement Options in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2006-09. Scheduling preventive railway maintenance activities in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10845-011-0616-3

    DOI

    http://dx.doi.org/10.1007/s10845-011-0616-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029082699


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Islamic Azad University, Tehran", 
              "id": "https://www.grid.ac/institutes/grid.411463.5", 
              "name": [
                "Member of Young Researchers Club, Islamic Azad University, Firouzkooh, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arab", 
            "givenName": "Ali", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universiti Putra Malaysia", 
              "id": "https://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ismail", 
            "givenName": "Napsiah", 
            "id": "sg:person.014115065001.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115065001.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universiti Putra Malaysia", 
              "id": "https://www.grid.ac/institutes/grid.11142.37", 
              "name": [
                "Department of Mathematics, Faculty of Science, University of Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Lai Soon", 
            "id": "sg:person.011350347024.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350347024.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0169-7439(96)00010-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002918948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-011-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003358157", 
              "https://doi.org/10.1007/978-1-84800-011-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84800-011-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003358157", 
              "https://doi.org/10.1007/978-1-84800-011-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11633-006-0192-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003634660", 
              "https://doi.org/10.1007/s11633-006-0192-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compind.2006.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007108951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jors.1996.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015543956", 
              "https://doi.org/10.1057/jors.1996.176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2602085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018234222", 
              "https://doi.org/10.1057/palgrave.jors.2602085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(01)00197-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027836976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-007-0047-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029074768", 
              "https://doi.org/10.1007/s10845-007-0047-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-004-0167-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030793115", 
              "https://doi.org/10.1007/s00291-004-0167-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-004-0167-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030793115", 
              "https://doi.org/10.1007/s00291-004-0167-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-009-0313-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032901555", 
              "https://doi.org/10.1007/s10845-009-0313-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(96)00073-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042059478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07408170701315339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044167914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2600612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046276373", 
              "https://doi.org/10.1057/palgrave.jors.2600612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11633-006-0125-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047022412", 
              "https://doi.org/10.1007/s11633-006-0125-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2004.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051160319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2336257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062078567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2716713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062079800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/ijoc.14.3.192.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064707070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wsc.2005.1574242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095304291"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08", 
        "datePublishedReg": "2013-08-01", 
        "description": "In this paper, a new approach to maintenance scheduling for a multi-component production system which takes into account the real-time information from workstations including remaining reliability of equipments as well as work-in-process inventories in each workstation is proposed. To model dynamics of the system, other information like production line configuration, cycle times, buffers\u2019 capacity and mean time to repair of machines are also considered. Using factorial experiment design the problem is formulated to comprehensively monitor the effects of each possible schedule on throughput of the production system. The optimal maintenance schedule is searched by genetic algorithm-based optimization engine implemented in a simulation optimization platform. The proposed approach exploits all of makespans of planning horizon to find the best opportunity to perform maintenance actions on degrading machines in a way that maximizes the system throughput and mitigates the production losses caused by imperfect traditional maintenance strategies. Finally the proposed method is tested in a real production line to magnify the accuracy of proposed scheduling method. The experimental results indicate that the proposed approach guarantees the operational productivity and scheduling efficiency as well.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10845-011-0616-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043477", 
            "issn": [
              "0956-5515", 
              "1572-8145"
            ], 
            "name": "Journal of Intelligent Manufacturing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "name": "Maintenance scheduling incorporating dynamics of production system and real-time information from workstations", 
        "pagination": "695-705", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a8b229833a34e88be1c14d7903d1c299b2a73ae8d6aaa5560a294655bb1d7b7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10845-011-0616-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029082699"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10845-011-0616-3", 
          "https://app.dimensions.ai/details/publication/pub.1029082699"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10845-011-0616-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10845-011-0616-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10845-011-0616-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10845-011-0616-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10845-011-0616-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10845-011-0616-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N32ebee1ecd9248d3bde0d250b4a3bdf8
    4 schema:citation sg:pub.10.1007/978-1-84800-011-7_11
    5 sg:pub.10.1007/s00291-004-0167-5
    6 sg:pub.10.1007/s10845-007-0047-3
    7 sg:pub.10.1007/s10845-009-0313-7
    8 sg:pub.10.1007/s11633-006-0125-6
    9 sg:pub.10.1007/s11633-006-0192-8
    10 sg:pub.10.1057/jors.1996.176
    11 sg:pub.10.1057/palgrave.jors.2600612
    12 sg:pub.10.1057/palgrave.jors.2602085
    13 https://doi.org/10.1016/0169-7439(96)00010-x
    14 https://doi.org/10.1016/j.compind.2006.02.014
    15 https://doi.org/10.1016/j.ejor.2004.11.013
    16 https://doi.org/10.1016/s0377-2217(01)00197-7
    17 https://doi.org/10.1016/s0377-2217(96)00073-2
    18 https://doi.org/10.1080/07408170701315339
    19 https://doi.org/10.1109/wsc.2005.1574242
    20 https://doi.org/10.1115/1.2336257
    21 https://doi.org/10.1115/1.2716713
    22 https://doi.org/10.1287/ijoc.14.3.192.113
    23 schema:datePublished 2013-08
    24 schema:datePublishedReg 2013-08-01
    25 schema:description In this paper, a new approach to maintenance scheduling for a multi-component production system which takes into account the real-time information from workstations including remaining reliability of equipments as well as work-in-process inventories in each workstation is proposed. To model dynamics of the system, other information like production line configuration, cycle times, buffers’ capacity and mean time to repair of machines are also considered. Using factorial experiment design the problem is formulated to comprehensively monitor the effects of each possible schedule on throughput of the production system. The optimal maintenance schedule is searched by genetic algorithm-based optimization engine implemented in a simulation optimization platform. The proposed approach exploits all of makespans of planning horizon to find the best opportunity to perform maintenance actions on degrading machines in a way that maximizes the system throughput and mitigates the production losses caused by imperfect traditional maintenance strategies. Finally the proposed method is tested in a real production line to magnify the accuracy of proposed scheduling method. The experimental results indicate that the proposed approach guarantees the operational productivity and scheduling efficiency as well.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N7a4e5a9e4f014aa198b3978bf12b96e4
    30 N8c87e0b283e342e191b1e5dac1ed7b1c
    31 sg:journal.1043477
    32 schema:name Maintenance scheduling incorporating dynamics of production system and real-time information from workstations
    33 schema:pagination 695-705
    34 schema:productId N3189913b8402427ea9fb4742738cfb60
    35 Nbe6ef4875dd74b979b091837dddba3c9
    36 Ne8e76cf6aea748258fb4781b13e0a133
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029082699
    38 https://doi.org/10.1007/s10845-011-0616-3
    39 schema:sdDatePublished 2019-04-10T15:46
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N691b349824744e8bbc0f0d92ca5a0cf7
    42 schema:url http://link.springer.com/10.1007/s10845-011-0616-3
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N3189913b8402427ea9fb4742738cfb60 schema:name doi
    47 schema:value 10.1007/s10845-011-0616-3
    48 rdf:type schema:PropertyValue
    49 N32ebee1ecd9248d3bde0d250b4a3bdf8 rdf:first Ne96b258fb7344b489b28a687b4a17499
    50 rdf:rest N36f8c73641dd4b3593e6654282e24d2f
    51 N36f8c73641dd4b3593e6654282e24d2f rdf:first sg:person.014115065001.37
    52 rdf:rest N9eca2f618db34772819a2491b098c5bf
    53 N691b349824744e8bbc0f0d92ca5a0cf7 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N7a4e5a9e4f014aa198b3978bf12b96e4 schema:issueNumber 4
    56 rdf:type schema:PublicationIssue
    57 N8c87e0b283e342e191b1e5dac1ed7b1c schema:volumeNumber 24
    58 rdf:type schema:PublicationVolume
    59 N9eca2f618db34772819a2491b098c5bf rdf:first sg:person.011350347024.11
    60 rdf:rest rdf:nil
    61 Nbe6ef4875dd74b979b091837dddba3c9 schema:name dimensions_id
    62 schema:value pub.1029082699
    63 rdf:type schema:PropertyValue
    64 Ne8e76cf6aea748258fb4781b13e0a133 schema:name readcube_id
    65 schema:value 8a8b229833a34e88be1c14d7903d1c299b2a73ae8d6aaa5560a294655bb1d7b7
    66 rdf:type schema:PropertyValue
    67 Ne96b258fb7344b489b28a687b4a17499 schema:affiliation https://www.grid.ac/institutes/grid.411463.5
    68 schema:familyName Arab
    69 schema:givenName Ali
    70 rdf:type schema:Person
    71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Information and Computing Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Artificial Intelligence and Image Processing
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1043477 schema:issn 0956-5515
    78 1572-8145
    79 schema:name Journal of Intelligent Manufacturing
    80 rdf:type schema:Periodical
    81 sg:person.011350347024.11 schema:affiliation https://www.grid.ac/institutes/grid.11142.37
    82 schema:familyName Lee
    83 schema:givenName Lai Soon
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350347024.11
    85 rdf:type schema:Person
    86 sg:person.014115065001.37 schema:affiliation https://www.grid.ac/institutes/grid.11142.37
    87 schema:familyName Ismail
    88 schema:givenName Napsiah
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115065001.37
    90 rdf:type schema:Person
    91 sg:pub.10.1007/978-1-84800-011-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003358157
    92 https://doi.org/10.1007/978-1-84800-011-7_11
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00291-004-0167-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030793115
    95 https://doi.org/10.1007/s00291-004-0167-5
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s10845-007-0047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029074768
    98 https://doi.org/10.1007/s10845-007-0047-3
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10845-009-0313-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032901555
    101 https://doi.org/10.1007/s10845-009-0313-7
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11633-006-0125-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047022412
    104 https://doi.org/10.1007/s11633-006-0125-6
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11633-006-0192-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003634660
    107 https://doi.org/10.1007/s11633-006-0192-8
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1057/jors.1996.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015543956
    110 https://doi.org/10.1057/jors.1996.176
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1057/palgrave.jors.2600612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046276373
    113 https://doi.org/10.1057/palgrave.jors.2600612
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1057/palgrave.jors.2602085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018234222
    116 https://doi.org/10.1057/palgrave.jors.2602085
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0169-7439(96)00010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002918948
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.compind.2006.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108951
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.ejor.2004.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051160319
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0377-2217(01)00197-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027836976
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0377-2217(96)00073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042059478
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1080/07408170701315339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044167914
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/wsc.2005.1574242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095304291
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1115/1.2336257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062078567
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1115/1.2716713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062079800
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1287/ijoc.14.3.192.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707070
    137 rdf:type schema:CreativeWork
    138 https://www.grid.ac/institutes/grid.11142.37 schema:alternateName Universiti Putra Malaysia
    139 schema:name Department of Mathematics, Faculty of Science, University of Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
    140 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.411463.5 schema:alternateName Islamic Azad University, Tehran
    143 schema:name Member of Young Researchers Club, Islamic Azad University, Firouzkooh, Tehran, Iran
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...