An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

M. Zandieh, N. Karimi

ABSTRACT

In this paper we consider a multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times by minimizing total weighted tardiness and maximum completion time simultaneously. Whereas these kinds of problems are NP-hard, thus we proposed a multi-population genetic algorithm (MPGA) to search Pareto optimal solution for it. This algorithm comprises two stages. First stage applies combined objective of mentioned objectives and second stage uses previous stage’s results as an initial solution. In the second stage sub-population will be generated by re-arrangement of solutions of first stage. To evaluate performance of the proposed MPGA, it is compared with two distinguished benchmarks, multi-objective genetic algorithm (MOGA) and non-dominated sorting genetic algorithm II (NSGA-II), in three sizes of test problems: small, medium and large. The computational results show that this algorithm performs better than them. More... »

PAGES

979-989

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10845-009-0374-7

DOI

http://dx.doi.org/10.1007/s10845-009-0374-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049320692


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shahid Beheshti University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.411600.2", 
          "name": [
            "Department of Industrial Management, Management and Accounting Faculty, Shahid Beheshti University, G. C., Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zandieh", 
        "givenName": "M.", 
        "id": "sg:person.014751776360.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014751776360.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qazvin Islamic Azad University", 
          "id": "https://www.grid.ac/institutes/grid.449392.1", 
          "name": [
            "Faculty of Industrial and Mechanical Engineering, Qazvin Islamic Azad University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karimi", 
        "givenName": "N.", 
        "id": "sg:person.07632402547.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632402547.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0895-7177(90)90368-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001054351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2002.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001307793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00302-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001558092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00302-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001558092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(99)00070-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004147798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(99)00387-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006615082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2004.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008297073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-008-0157-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008588523", 
          "https://doi.org/10.1007/s10845-008-0157-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1885-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008778449", 
          "https://doi.org/10.1007/s00170-008-1885-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1885-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008778449", 
          "https://doi.org/10.1007/s00170-008-1885-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7177(99)00085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012954044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.1993.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014220731", 
          "https://doi.org/10.1057/jors.1993.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07408178808966147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015294829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540210163973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017727760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(86)90037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(86)90037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019086595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-8352(92)90045-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021391837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2004.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022466830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365600568167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022987704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(02)00059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023791927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(03)00401-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027571328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(03)00401-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027571328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-8352(96)00045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029127862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(95)00119-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031617676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008935027685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031742834", 
          "https://doi.org/10.1023/a:1008935027685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(98)00026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031794123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-5273(94)00083-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032399482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0483(98)00042-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032484587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-008-0088-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034038031", 
          "https://doi.org/10.1007/s10845-008-0088-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/01443579510099715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-5273(96)00105-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035394727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207549208948107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036153574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(98)00405-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036319209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1937-5956.2000.tb00137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036604985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1937-5956.2000.tb00137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036604985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0906-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023398", 
          "https://doi.org/10.1007/s00170-006-0906-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0906-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023398", 
          "https://doi.org/10.1007/s00170-006-0906-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcim.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039054939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044237244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2003.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207548708919861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046661639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2005.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049188387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009841719644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049419449", 
          "https://doi.org/10.1023/a:1009841719644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1740-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052956406", 
          "https://doi.org/10.1007/s00170-008-1740-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1740-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052956406", 
          "https://doi.org/10.1007/s00170-008-1740-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.996017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.6.2.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15807/jorsj.26.226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090380005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "In this paper we consider a multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times by minimizing total weighted tardiness and maximum completion time simultaneously. Whereas these kinds of problems are NP-hard, thus we proposed a multi-population genetic algorithm (MPGA) to search Pareto optimal solution for it. This algorithm comprises two stages. First stage applies combined objective of mentioned objectives and second stage uses previous stage\u2019s results as an initial solution. In the second stage sub-population will be generated by re-arrangement of solutions of first stage. To evaluate performance of the proposed MPGA, it is compared with two distinguished benchmarks, multi-objective genetic algorithm (MOGA) and non-dominated sorting genetic algorithm II (NSGA-II), in three sizes of test problems: small, medium and large. The computational results show that this algorithm performs better than them.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10845-009-0374-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043477", 
        "issn": [
          "0956-5515", 
          "1572-8145"
        ], 
        "name": "Journal of Intelligent Manufacturing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times", 
    "pagination": "979-989", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eaf46c58a0a5206e3d99d6ff227f52dc27903e637d588b4c81bfe1bff4bdfce3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10845-009-0374-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049320692"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10845-009-0374-7", 
      "https://app.dimensions.ai/details/publication/pub.1049320692"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10845-009-0374-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10845-009-0374-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10845-009-0374-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10845-009-0374-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10845-009-0374-7'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10845-009-0374-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N920a289c81b04ef581c7b985698658dc
4 schema:citation sg:pub.10.1007/s00170-006-0906-7
5 sg:pub.10.1007/s00170-008-1740-x
6 sg:pub.10.1007/s00170-008-1885-7
7 sg:pub.10.1007/s10845-008-0088-2
8 sg:pub.10.1007/s10845-008-0157-6
9 sg:pub.10.1023/a:1008935027685
10 sg:pub.10.1023/a:1009841719644
11 sg:pub.10.1057/jors.1993.3
12 https://doi.org/10.1016/0360-8352(92)90045-l
13 https://doi.org/10.1016/0360-8352(96)00045-9
14 https://doi.org/10.1016/0377-2217(86)90037-8
15 https://doi.org/10.1016/0377-2217(95)00119-0
16 https://doi.org/10.1016/0895-7177(90)90368-w
17 https://doi.org/10.1016/0925-5273(94)00083-m
18 https://doi.org/10.1016/j.cie.2003.11.004
19 https://doi.org/10.1016/j.cor.2004.07.004
20 https://doi.org/10.1016/j.cor.2004.11.024
21 https://doi.org/10.1016/j.ejor.2002.11.004
22 https://doi.org/10.1016/j.ejor.2004.08.008
23 https://doi.org/10.1016/j.ijpe.2004.03.011
24 https://doi.org/10.1016/j.ijpe.2005.02.006
25 https://doi.org/10.1016/j.rcim.2004.07.002
26 https://doi.org/10.1016/s0166-218x(03)00302-0
27 https://doi.org/10.1016/s0305-0483(98)00042-5
28 https://doi.org/10.1016/s0305-0548(02)00059-x
29 https://doi.org/10.1016/s0305-0548(98)00026-4
30 https://doi.org/10.1016/s0305-0548(99)00070-2
31 https://doi.org/10.1016/s0377-2217(03)00401-6
32 https://doi.org/10.1016/s0377-2217(99)00387-2
33 https://doi.org/10.1016/s0895-7177(99)00085-0
34 https://doi.org/10.1016/s0924-0136(98)00405-1
35 https://doi.org/10.1016/s0925-5273(96)00105-3
36 https://doi.org/10.1080/00207540210163973
37 https://doi.org/10.1080/00207548708919861
38 https://doi.org/10.1080/00207549208948107
39 https://doi.org/10.1080/07408178808966147
40 https://doi.org/10.1108/01443579510099715
41 https://doi.org/10.1109/4235.996017
42 https://doi.org/10.1111/j.1937-5956.2000.tb00137.x
43 https://doi.org/10.1162/106365600568167
44 https://doi.org/10.1287/ijoc.6.2.154
45 https://doi.org/10.15807/jorsj.26.226
46 schema:datePublished 2011-12
47 schema:datePublishedReg 2011-12-01
48 schema:description In this paper we consider a multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times by minimizing total weighted tardiness and maximum completion time simultaneously. Whereas these kinds of problems are NP-hard, thus we proposed a multi-population genetic algorithm (MPGA) to search Pareto optimal solution for it. This algorithm comprises two stages. First stage applies combined objective of mentioned objectives and second stage uses previous stage’s results as an initial solution. In the second stage sub-population will be generated by re-arrangement of solutions of first stage. To evaluate performance of the proposed MPGA, it is compared with two distinguished benchmarks, multi-objective genetic algorithm (MOGA) and non-dominated sorting genetic algorithm II (NSGA-II), in three sizes of test problems: small, medium and large. The computational results show that this algorithm performs better than them.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N101c841c3e4444469ff0ece517d79ce2
53 Nbe7509b9901041c0bb1e135a92a25851
54 sg:journal.1043477
55 schema:name An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times
56 schema:pagination 979-989
57 schema:productId N82bcb7a99700471db75d14c638424b34
58 Ne0ab449e2afc48a997d233b64d66ca9b
59 Nf952caa1c0be4510a9f073963714e863
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049320692
61 https://doi.org/10.1007/s10845-009-0374-7
62 schema:sdDatePublished 2019-04-10T16:37
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N5558d7a0e29f4bab9e19ac8d37c9611e
65 schema:url http://link.springer.com/10.1007/s10845-009-0374-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N101c841c3e4444469ff0ece517d79ce2 schema:issueNumber 6
70 rdf:type schema:PublicationIssue
71 N5558d7a0e29f4bab9e19ac8d37c9611e schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N82bcb7a99700471db75d14c638424b34 schema:name readcube_id
74 schema:value eaf46c58a0a5206e3d99d6ff227f52dc27903e637d588b4c81bfe1bff4bdfce3
75 rdf:type schema:PropertyValue
76 N920a289c81b04ef581c7b985698658dc rdf:first sg:person.014751776360.85
77 rdf:rest N93b0eb7baa444537aaa00292d6c12406
78 N93b0eb7baa444537aaa00292d6c12406 rdf:first sg:person.07632402547.28
79 rdf:rest rdf:nil
80 Nbe7509b9901041c0bb1e135a92a25851 schema:volumeNumber 22
81 rdf:type schema:PublicationVolume
82 Ne0ab449e2afc48a997d233b64d66ca9b schema:name dimensions_id
83 schema:value pub.1049320692
84 rdf:type schema:PropertyValue
85 Nf952caa1c0be4510a9f073963714e863 schema:name doi
86 schema:value 10.1007/s10845-009-0374-7
87 rdf:type schema:PropertyValue
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1043477 schema:issn 0956-5515
95 1572-8145
96 schema:name Journal of Intelligent Manufacturing
97 rdf:type schema:Periodical
98 sg:person.014751776360.85 schema:affiliation https://www.grid.ac/institutes/grid.411600.2
99 schema:familyName Zandieh
100 schema:givenName M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014751776360.85
102 rdf:type schema:Person
103 sg:person.07632402547.28 schema:affiliation https://www.grid.ac/institutes/grid.449392.1
104 schema:familyName Karimi
105 schema:givenName N.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632402547.28
107 rdf:type schema:Person
108 sg:pub.10.1007/s00170-006-0906-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023398
109 https://doi.org/10.1007/s00170-006-0906-7
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00170-008-1740-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052956406
112 https://doi.org/10.1007/s00170-008-1740-x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00170-008-1885-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008778449
115 https://doi.org/10.1007/s00170-008-1885-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10845-008-0088-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034038031
118 https://doi.org/10.1007/s10845-008-0088-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10845-008-0157-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008588523
121 https://doi.org/10.1007/s10845-008-0157-6
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1008935027685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031742834
124 https://doi.org/10.1023/a:1008935027685
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1009841719644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049419449
127 https://doi.org/10.1023/a:1009841719644
128 rdf:type schema:CreativeWork
129 sg:pub.10.1057/jors.1993.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014220731
130 https://doi.org/10.1057/jors.1993.3
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0360-8352(92)90045-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1021391837
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0360-8352(96)00045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029127862
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0377-2217(86)90037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018553347
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0377-2217(95)00119-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031617676
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0895-7177(90)90368-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1001054351
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0925-5273(94)00083-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1032399482
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cie.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045667647
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cor.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044237244
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cor.2004.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022466830
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ejor.2002.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001307793
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ejor.2004.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019086595
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijpe.2004.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008297073
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ijpe.2005.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049188387
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.rcim.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039054939
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0166-218x(03)00302-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001558092
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0305-0483(98)00042-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032484587
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0305-0548(02)00059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023791927
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0305-0548(98)00026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031794123
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0305-0548(99)00070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004147798
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0377-2217(03)00401-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027571328
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0377-2217(99)00387-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006615082
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0895-7177(99)00085-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012954044
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0924-0136(98)00405-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036319209
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0925-5273(96)00105-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035394727
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/00207540210163973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017727760
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00207548708919861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046661639
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/00207549208948107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036153574
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/07408178808966147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015294829
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1108/01443579510099715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340119
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1937-5956.2000.tb00137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036604985
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1162/106365600568167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022987704
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1287/ijoc.6.2.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707495
197 rdf:type schema:CreativeWork
198 https://doi.org/10.15807/jorsj.26.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090380005
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.411600.2 schema:alternateName Shahid Beheshti University of Medical Sciences
201 schema:name Department of Industrial Management, Management and Accounting Faculty, Shahid Beheshti University, G. C., Tehran, Iran
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.449392.1 schema:alternateName Qazvin Islamic Azad University
204 schema:name Faculty of Industrial and Mechanical Engineering, Qazvin Islamic Azad University, Qazvin, Iran
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...