D-HOCS: an algorithm for discovering the hierarchical overlapping community structure of a social network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06

AUTHORS

Jiangtao Qiu, Zhangxi Lin

ABSTRACT

Social networks often demonstrate a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities, i.e. communities in social networks may be overlapping. In this paper, we define a hierarchical overlapping community structure to present overlapping communities of a social network at different levels of granularity. Discovering the hierarchical overlapping community structure of a social network can provide us a deeper understanding of the complex nature of social networks. We propose an algorithm, called D-HOCS, to derive the hierarchical overlapping community structure of social networks. Firstly, D-HOCS generates a probability transition matrix by applying random walk to a social network, and then trains a Gaussian Mixture Model using the matrix. Further D-HOCS derives overlapping communities by analyzing mean vectors of the Gaussian mixture model. Varying the number of components, D-HOCS repeatedly trains the Gaussian mixture model, detecting the overlapping communities at different levels of granularity. Organizing the overlapping communities into a hierarchy, D-HOCS can finally obtain the hierarchical overlapping community structure of the social network. The experiments conducted on synthetic and real dataset demonstrate the feasibility and applicability of the proposed algorithm. We further employ D-HOCS to explore Enron e-mail corpus, and obtain several interesting insights. For example, we find out a coordinator who coordinated many sections of the Enron Corporation to complete an important task during first half of 2001. We also identify a community that corresponds to a real organization in Enron Corporation. More... »

PAGES

353-370

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10844-013-0272-5

DOI

http://dx.doi.org/10.1007/s10844-013-0272-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043964533


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwestern University of Finance and Economics", 
          "id": "https://www.grid.ac/institutes/grid.443347.3", 
          "name": [
            "School of Information, Southwestern University of Finance and Economics, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Jiangtao", 
        "id": "sg:person.016135773755.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135773755.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas Tech University", 
          "id": "https://www.grid.ac/institutes/grid.264784.b", 
          "name": [
            "The Rawls College of Business Administration, Texas Tech University, Lubbock, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Zhangxi", 
        "id": "sg:person.013405043764.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405043764.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature09182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936185", 
          "https://doi.org/10.1038/nature09182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936185", 
          "https://doi.org/10.1038/nature09182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2007-00271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002514863", 
          "https://doi.org/10.1140/epjb/e2007-00271-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10588-005-5377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006267522", 
          "https://doi.org/10.1007/s10588-005-5377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10588-005-5377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006267522", 
          "https://doi.org/10.1007/s10588-005-5377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01206-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008761279", 
          "https://doi.org/10.1007/978-3-642-01206-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01206-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008761279", 
          "https://doi.org/10.1007/978-3-642-01206-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010192610", 
          "https://doi.org/10.1038/nature06830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.datak.2012.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010671372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027022881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10588-005-5381-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027382549", 
          "https://doi.org/10.1007/s10588-005-5381-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2009/07/p07042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031068393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2009/07/p07042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031068393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2008.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1871437.1871469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034194727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1277741.1277784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2011/02/p02017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036707433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/jar.33.4.3629752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058909178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.868688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2001.989507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093884541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/passat/socialcom.2011.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094696793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.2229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579438"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "Social networks often demonstrate a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities, i.e. communities in social networks may be overlapping. In this paper, we define a hierarchical overlapping community structure to present overlapping communities of a social network at different levels of granularity. Discovering the hierarchical overlapping community structure of a social network can provide us a deeper understanding of the complex nature of social networks. We propose an algorithm, called D-HOCS, to derive the hierarchical overlapping community structure of social networks. Firstly, D-HOCS generates a probability transition matrix by applying random walk to a social network, and then trains a Gaussian Mixture Model using the matrix. Further D-HOCS derives overlapping communities by analyzing mean vectors of the Gaussian mixture model. Varying the number of components, D-HOCS repeatedly trains the Gaussian mixture model, detecting the overlapping communities at different levels of granularity. Organizing the overlapping communities into a hierarchy, D-HOCS can finally obtain the hierarchical overlapping community structure of the social network. The experiments conducted on synthetic and real dataset demonstrate the feasibility and applicability of the proposed algorithm. We further employ D-HOCS to explore Enron e-mail corpus, and obtain several interesting insights. For example, we find out a coordinator who coordinated many sections of the Enron Corporation to complete an important task during first half of 2001. We also identify a community that corresponds to a real organization in Enron Corporation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10844-013-0272-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7202083", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327483", 
        "issn": [
          "0925-9902", 
          "1573-7675"
        ], 
        "name": "Journal of Intelligent Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "D-HOCS: an algorithm for discovering the hierarchical overlapping community structure of a social network", 
    "pagination": "353-370", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d16b15d6bb8e4b111bfeb44e63327892b9d29abcdd1d82727f9ac13166462424"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10844-013-0272-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043964533"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10844-013-0272-5", 
      "https://app.dimensions.ai/details/publication/pub.1043964533"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54297_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10844-013-0272-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10844-013-0272-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10844-013-0272-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10844-013-0272-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10844-013-0272-5'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10844-013-0272-5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N62637495910347678b940c5fea0dc14d
4 schema:citation sg:pub.10.1007/978-3-642-01206-8_5
5 sg:pub.10.1007/s10588-005-5377-0
6 sg:pub.10.1007/s10588-005-5381-4
7 sg:pub.10.1038/nature03607
8 sg:pub.10.1038/nature06830
9 sg:pub.10.1038/nature09182
10 sg:pub.10.1140/epjb/e2007-00271-7
11 https://doi.org/10.1016/j.asoc.2013.01.018
12 https://doi.org/10.1016/j.datak.2012.09.002
13 https://doi.org/10.1016/j.physa.2008.12.021
14 https://doi.org/10.1086/jar.33.4.3629752
15 https://doi.org/10.1088/1367-2630/11/3/033015
16 https://doi.org/10.1088/1742-5468/2009/07/p07042
17 https://doi.org/10.1088/1742-5468/2011/02/p02017
18 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
19 https://doi.org/10.1103/physreve.69.026113
20 https://doi.org/10.1109/34.868688
21 https://doi.org/10.1109/icdm.2001.989507
22 https://doi.org/10.1109/passat/socialcom.2011.169
23 https://doi.org/10.1145/1277741.1277784
24 https://doi.org/10.1145/1871437.1871469
25 https://doi.org/10.1613/jair.2229
26 schema:datePublished 2014-06
27 schema:datePublishedReg 2014-06-01
28 schema:description Social networks often demonstrate a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities, i.e. communities in social networks may be overlapping. In this paper, we define a hierarchical overlapping community structure to present overlapping communities of a social network at different levels of granularity. Discovering the hierarchical overlapping community structure of a social network can provide us a deeper understanding of the complex nature of social networks. We propose an algorithm, called D-HOCS, to derive the hierarchical overlapping community structure of social networks. Firstly, D-HOCS generates a probability transition matrix by applying random walk to a social network, and then trains a Gaussian Mixture Model using the matrix. Further D-HOCS derives overlapping communities by analyzing mean vectors of the Gaussian mixture model. Varying the number of components, D-HOCS repeatedly trains the Gaussian mixture model, detecting the overlapping communities at different levels of granularity. Organizing the overlapping communities into a hierarchy, D-HOCS can finally obtain the hierarchical overlapping community structure of the social network. The experiments conducted on synthetic and real dataset demonstrate the feasibility and applicability of the proposed algorithm. We further employ D-HOCS to explore Enron e-mail corpus, and obtain several interesting insights. For example, we find out a coordinator who coordinated many sections of the Enron Corporation to complete an important task during first half of 2001. We also identify a community that corresponds to a real organization in Enron Corporation.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N32343031f0664b62b4d0261f3f971f26
33 Nd28491cf499242c8b9ce05ee22ff9da0
34 sg:journal.1327483
35 schema:name D-HOCS: an algorithm for discovering the hierarchical overlapping community structure of a social network
36 schema:pagination 353-370
37 schema:productId N44447122fce04cec92bfce7e9d797b5b
38 N649b96b0c7724deca3b1241498b6c860
39 Nc01f16e3c55140f19cf8d282667e5f55
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043964533
41 https://doi.org/10.1007/s10844-013-0272-5
42 schema:sdDatePublished 2019-04-11T10:15
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N910192288670467186e18cf3e640f412
45 schema:url https://link.springer.com/10.1007%2Fs10844-013-0272-5
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N32343031f0664b62b4d0261f3f971f26 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N44447122fce04cec92bfce7e9d797b5b schema:name doi
52 schema:value 10.1007/s10844-013-0272-5
53 rdf:type schema:PropertyValue
54 N62637495910347678b940c5fea0dc14d rdf:first sg:person.016135773755.14
55 rdf:rest N9e80e808580d4c2c832e01f3df37286c
56 N649b96b0c7724deca3b1241498b6c860 schema:name readcube_id
57 schema:value d16b15d6bb8e4b111bfeb44e63327892b9d29abcdd1d82727f9ac13166462424
58 rdf:type schema:PropertyValue
59 N910192288670467186e18cf3e640f412 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N9e80e808580d4c2c832e01f3df37286c rdf:first sg:person.013405043764.98
62 rdf:rest rdf:nil
63 Nc01f16e3c55140f19cf8d282667e5f55 schema:name dimensions_id
64 schema:value pub.1043964533
65 rdf:type schema:PropertyValue
66 Nd28491cf499242c8b9ce05ee22ff9da0 schema:volumeNumber 42
67 rdf:type schema:PublicationVolume
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:grant.7202083 http://pending.schema.org/fundedItem sg:pub.10.1007/s10844-013-0272-5
75 rdf:type schema:MonetaryGrant
76 sg:journal.1327483 schema:issn 0925-9902
77 1573-7675
78 schema:name Journal of Intelligent Information Systems
79 rdf:type schema:Periodical
80 sg:person.013405043764.98 schema:affiliation https://www.grid.ac/institutes/grid.264784.b
81 schema:familyName Lin
82 schema:givenName Zhangxi
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013405043764.98
84 rdf:type schema:Person
85 sg:person.016135773755.14 schema:affiliation https://www.grid.ac/institutes/grid.443347.3
86 schema:familyName Qiu
87 schema:givenName Jiangtao
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135773755.14
89 rdf:type schema:Person
90 sg:pub.10.1007/978-3-642-01206-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008761279
91 https://doi.org/10.1007/978-3-642-01206-8_5
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10588-005-5377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006267522
94 https://doi.org/10.1007/s10588-005-5377-0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10588-005-5381-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027382549
97 https://doi.org/10.1007/s10588-005-5381-4
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
100 https://doi.org/10.1038/nature03607
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nature06830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010192610
103 https://doi.org/10.1038/nature06830
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature09182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936185
106 https://doi.org/10.1038/nature09182
107 rdf:type schema:CreativeWork
108 sg:pub.10.1140/epjb/e2007-00271-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002514863
109 https://doi.org/10.1140/epjb/e2007-00271-7
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.asoc.2013.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027022881
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.datak.2012.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010671372
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.physa.2008.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392740
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1086/jar.33.4.3629752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058909178
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/1367-2630/11/3/033015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733277
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/1742-5468/2009/07/p07042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031068393
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1742-5468/2011/02/p02017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036707433
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/34.868688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157130
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icdm.2001.989507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093884541
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/passat/socialcom.2011.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094696793
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/1277741.1277784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034433250
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/1871437.1871469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034194727
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1613/jair.2229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579438
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.264784.b schema:alternateName Texas Tech University
142 schema:name The Rawls College of Business Administration, Texas Tech University, Lubbock, TX, USA
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.443347.3 schema:alternateName Southwestern University of Finance and Economics
145 schema:name School of Information, Southwestern University of Finance and Economics, Chengdu, China
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...