Operators for transforming kernels into quasi-local kernels that improve SVM accuracy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

Nicola Segata, Enrico Blanzieri

ABSTRACT

Motivated by the crucial role that locality plays in various learning approaches, we present, in the framework of kernel machines for classification, a novel family of operators on kernels able to integrate local information into any kernel obtaining quasi-local kernels. The quasi-local kernels maintain the possibly global properties of the input kernel and they increase the kernel value as the points get closer in the feature space of the input kernel, mixing the effect of the input kernel with a kernel which is local in the feature space of the input one. If applied on a local kernel the operators introduce an additional level of locality equivalent to use a local kernel with non-stationary kernel width. The operators accept two parameters that regulate the width of the exponential influence of points in the locality-dependent component and the balancing between the feature-space local component and the input kernel. We address the choice of these parameters with a data-dependent strategy. Experiments carried out with SVM applying the operators on traditional kernel functions on a total of 43 datasets with different characteristics and application domains, achieve very good results supported by statistical significance. More... »

PAGES

155-186

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10844-010-0131-6

DOI

http://dx.doi.org/10.1007/s10844-010-0131-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003336852


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Ingegneria e Scienza dell\u2019Informazione, University of Trento, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segata", 
        "givenName": "Nicola", 
        "id": "sg:person.0736227144.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Ingegneria e Scienza dell\u2019Informazione, University of Trento, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanzieri", 
        "givenName": "Enrico", 
        "id": "sg:person.013033541655.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50048-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002050789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-76153-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006377855", 
          "https://doi.org/10.1007/978-3-642-76153-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1993.5.6.893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006746347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03070-3_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416050", 
          "https://doi.org/10.1007/978-3-642-03070-3_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03070-3_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416050", 
          "https://doi.org/10.1007/978-3-642-03070-3_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-009-0101-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011411935", 
          "https://doi.org/10.1007/s10844-009-0101-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-009-0101-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011411935", 
          "https://doi.org/10.1007/s10844-009-0101-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015435146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.848998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018563512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2006.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020176705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839519508945477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027171810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028334489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-005-1505-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028900682", 
          "https://doi.org/10.1007/s10994-005-1505-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-005-1505-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028900682", 
          "https://doi.org/10.1007/s10994-005-1505-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02998-1_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029898046", 
          "https://doi.org/10.1007/978-3-642-02998-1_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02998-1_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029898046", 
          "https://doi.org/10.1007/978-3-642-02998-1_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.9.799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030365672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036075557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcom.2002.0642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976600300014980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044515790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046587395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013848912046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046804922", 
          "https://doi.org/10.1023/a:1013848912046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2004.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047371304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1992.4.6.888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051218762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.991427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.916090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.839514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2003.820828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2007.1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061831234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972771.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nnsp.1999.788121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093178998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnnb.2005.1614559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093259085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093360276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093880961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2002.1007589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093969098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1996.547202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094110580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094121563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2006.1008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094208799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102728208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "Motivated by the crucial role that locality plays in various learning approaches, we present, in the framework of kernel machines for classification, a novel family of operators on kernels able to integrate local information into any kernel obtaining quasi-local kernels. The quasi-local kernels maintain the possibly global properties of the input kernel and they increase the kernel value as the points get closer in the feature space of the input kernel, mixing the effect of the input kernel with a kernel which is local in the feature space of the input one. If applied on a local kernel the operators introduce an additional level of locality equivalent to use a local kernel with non-stationary kernel width. The operators accept two parameters that regulate the width of the exponential influence of points in the locality-dependent component and the balancing between the feature-space local component and the input kernel. We address the choice of these parameters with a data-dependent strategy. Experiments carried out with SVM applying the operators on traditional kernel functions on a total of 43 datasets with different characteristics and application domains, achieve very good results supported by statistical significance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10844-010-0131-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327483", 
        "issn": [
          "0925-9902", 
          "1573-7675"
        ], 
        "name": "Journal of Intelligent Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Operators for transforming kernels into quasi-local kernels that improve SVM accuracy", 
    "pagination": "155-186", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fe52cd8e67bef98f04c83514d19a73dc18d3836bb86d2d1c188642e7d0347fb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10844-010-0131-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003336852"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10844-010-0131-6", 
      "https://app.dimensions.ai/details/publication/pub.1003336852"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10844-010-0131-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10844-010-0131-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10844-010-0131-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10844-010-0131-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10844-010-0131-6'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10844-010-0131-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1150f503ad9d4da3b554bc97eac6ba11
4 schema:citation sg:pub.10.1007/978-1-4757-3264-1
5 sg:pub.10.1007/978-3-642-02998-1_24
6 sg:pub.10.1007/978-3-642-03070-3_22
7 sg:pub.10.1007/978-3-642-76153-9_5
8 sg:pub.10.1007/bf00994018
9 sg:pub.10.1007/s10844-009-0101-z
10 sg:pub.10.1007/s10994-005-1505-9
11 sg:pub.10.1023/a:1013848912046
12 https://doi.org/10.1006/jcom.2002.0642
13 https://doi.org/10.1016/b978-1-55860-377-6.50048-7
14 https://doi.org/10.1016/j.jpdc.2004.03.020
15 https://doi.org/10.1016/j.patcog.2006.04.025
16 https://doi.org/10.1080/08839519508945477
17 https://doi.org/10.1093/bioinformatics/16.9.799
18 https://doi.org/10.1093/bioinformatics/bth186
19 https://doi.org/10.1109/72.991427
20 https://doi.org/10.1109/cvpr.2005.216
21 https://doi.org/10.1109/cvpr.2006.301
22 https://doi.org/10.1109/iccv.2003.1238370
23 https://doi.org/10.1109/icnnb.2005.1614559
24 https://doi.org/10.1109/icpr.1996.547202
25 https://doi.org/10.1109/igarss.2006.1008
26 https://doi.org/10.1109/ijcnn.2002.1007589
27 https://doi.org/10.1109/nnsp.1999.788121
28 https://doi.org/10.1109/tcbb.2007.1048
29 https://doi.org/10.1109/tgrs.2008.916090
30 https://doi.org/10.1109/tit.2004.839514
31 https://doi.org/10.1109/tnn.2003.820828
32 https://doi.org/10.1109/tnn.2005.848998
33 https://doi.org/10.1109/tpami.2005.58
34 https://doi.org/10.1109/tpami.2006.248
35 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
36 https://doi.org/10.1126/science.286.5439.531
37 https://doi.org/10.1126/science.290.5500.2319
38 https://doi.org/10.1126/science.290.5500.2323
39 https://doi.org/10.1137/1.9781611972771.45
40 https://doi.org/10.1145/1143844.1143914
41 https://doi.org/10.1145/1143844.1143958
42 https://doi.org/10.1162/089976600300014980
43 https://doi.org/10.1162/089976698300017467
44 https://doi.org/10.1162/neco.1992.4.6.888
45 https://doi.org/10.1162/neco.1993.5.6.893
46 https://doi.org/10.2307/3001968
47 schema:datePublished 2011-10
48 schema:datePublishedReg 2011-10-01
49 schema:description Motivated by the crucial role that locality plays in various learning approaches, we present, in the framework of kernel machines for classification, a novel family of operators on kernels able to integrate local information into any kernel obtaining quasi-local kernels. The quasi-local kernels maintain the possibly global properties of the input kernel and they increase the kernel value as the points get closer in the feature space of the input kernel, mixing the effect of the input kernel with a kernel which is local in the feature space of the input one. If applied on a local kernel the operators introduce an additional level of locality equivalent to use a local kernel with non-stationary kernel width. The operators accept two parameters that regulate the width of the exponential influence of points in the locality-dependent component and the balancing between the feature-space local component and the input kernel. We address the choice of these parameters with a data-dependent strategy. Experiments carried out with SVM applying the operators on traditional kernel functions on a total of 43 datasets with different characteristics and application domains, achieve very good results supported by statistical significance.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N22db6dd005754e27b8298684ae57c83e
54 N24077ebe8898472bad1767620131ff0e
55 sg:journal.1327483
56 schema:name Operators for transforming kernels into quasi-local kernels that improve SVM accuracy
57 schema:pagination 155-186
58 schema:productId N2eb89705136a40b784f5d8bb04a52e79
59 Nb17d12a0cde04ffc852343dff66e159a
60 Nb2ce8951496a47749e90641f5df8a57b
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003336852
62 https://doi.org/10.1007/s10844-010-0131-6
63 schema:sdDatePublished 2019-04-10T20:46
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N05dd691672a546fb940c4fb6e113df2c
66 schema:url http://link.springer.com/10.1007%2Fs10844-010-0131-6
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N05dd691672a546fb940c4fb6e113df2c schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N1150f503ad9d4da3b554bc97eac6ba11 rdf:first sg:person.0736227144.03
73 rdf:rest Nc541b0fb2388447282a58852a0947411
74 N22db6dd005754e27b8298684ae57c83e schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 N24077ebe8898472bad1767620131ff0e schema:volumeNumber 37
77 rdf:type schema:PublicationVolume
78 N2eb89705136a40b784f5d8bb04a52e79 schema:name doi
79 schema:value 10.1007/s10844-010-0131-6
80 rdf:type schema:PropertyValue
81 Nb17d12a0cde04ffc852343dff66e159a schema:name dimensions_id
82 schema:value pub.1003336852
83 rdf:type schema:PropertyValue
84 Nb2ce8951496a47749e90641f5df8a57b schema:name readcube_id
85 schema:value 0fe52cd8e67bef98f04c83514d19a73dc18d3836bb86d2d1c188642e7d0347fb
86 rdf:type schema:PropertyValue
87 Nc541b0fb2388447282a58852a0947411 rdf:first sg:person.013033541655.32
88 rdf:rest rdf:nil
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1327483 schema:issn 0925-9902
96 1573-7675
97 schema:name Journal of Intelligent Information Systems
98 rdf:type schema:Periodical
99 sg:person.013033541655.32 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
100 schema:familyName Blanzieri
101 schema:givenName Enrico
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32
103 rdf:type schema:Person
104 sg:person.0736227144.03 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
105 schema:familyName Segata
106 schema:givenName Nicola
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4757-3264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028478311
110 https://doi.org/10.1007/978-1-4757-3264-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-02998-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029898046
113 https://doi.org/10.1007/978-3-642-02998-1_24
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-03070-3_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010416050
116 https://doi.org/10.1007/978-3-642-03070-3_22
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-76153-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006377855
119 https://doi.org/10.1007/978-3-642-76153-9_5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
122 https://doi.org/10.1007/bf00994018
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10844-009-0101-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011411935
125 https://doi.org/10.1007/s10844-009-0101-z
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10994-005-1505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028900682
128 https://doi.org/10.1007/s10994-005-1505-9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1013848912046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046804922
131 https://doi.org/10.1023/a:1013848912046
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1006/jcom.2002.0642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587498
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/b978-1-55860-377-6.50048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002050789
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jpdc.2004.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047371304
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.patcog.2006.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020176705
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/08839519508945477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027171810
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/bioinformatics/16.9.799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030365672
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/bioinformatics/bth186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046587395
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/72.991427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219719
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/cvpr.2005.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094121563
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/cvpr.2006.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093880961
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/iccv.2003.1238370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093360276
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/icnnb.2005.1614559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093259085
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icpr.1996.547202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094110580
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/igarss.2006.1008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094208799
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/ijcnn.2002.1007589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093969098
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/nnsp.1999.788121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093178998
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tcbb.2007.1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061831234
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tgrs.2008.916090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610744
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tit.2004.839514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650349
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tnn.2003.820828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716662
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tnn.2005.848998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018563512
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tpami.2005.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742920
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tpami.2006.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743074
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.290.5500.2319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028334489
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1137/1.9781611972771.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800204
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1143844.1143914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036075557
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1143844.1143958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015435146
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1162/089976600300014980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044515790
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1162/089976698300017467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671707
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1162/neco.1992.4.6.888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051218762
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1162/neco.1993.5.6.893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006746347
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
204 schema:name Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Trento, Italy
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...