Noise reduction for instance-based learning with a local maximal margin approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

Nicola Segata, Enrico Blanzieri, Sarah Jane Delany, Pádraig Cunningham

ABSTRACT

To some extent the problem of noise reduction in machine learning has been finessed by the development of learning techniques that are noise-tolerant. However, it is difficult to make instance-based learning noise tolerant and noise reduction still plays an important role in k-nearest neighbour classification. There are also other motivations for noise reduction, for instance the elimination of noise may result in simpler models or data cleansing may be an end in itself. In this paper we present a novel approach to noise reduction based on local Support Vector Machines (LSVM) which brings the benefits of maximal margin classifiers to bear on noise reduction. This provides a more robust alternative to the majority rule on which almost all the existing noise reduction techniques are based. Roughly speaking, for each training example an SVM is trained on its neighbourhood and if the SVM classification for the central example disagrees with its actual class there is evidence in favour of removing it from the training set. We provide an empirical evaluation on 15 real datasets showing improved classification accuracy when using training data edited with our method as well as specific experiments regarding the spam filtering application domain. We present a further evaluation on two artificial datasets where we analyse two different types of noise (Gaussian feature noise and mislabelling noise) and the influence of different class densities. The conclusion is that LSVM noise reduction is significantly better than the other analysed algorithms for real datasets and for artificial datasets perturbed by Gaussian noise and in presence of uneven class densities. More... »

PAGES

301-331

References to SciGraph publications

  • 2001-07-12. A Fuzzy-Rough Approach for Case Base Maintenance in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2000-03. Reduction Techniques for Instance-Based Learning Algorithms in MACHINE LEARNING
  • 2001. Rough Sets Reduction Techniques for Case-Based Reasoning in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2002. Deleting and Building Sort Out Techniques for Case Base Maintenance in ADVANCES IN CASE-BASED REASONING
  • 2004-11. MBNR: Case-Based Reasoning with Local Feature Weighting by Neural Network in APPLIED INTELLIGENCE
  • 2009-06. Gaining insight through case-based explanation in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 2004. An Analysis of Case-Base Editing in a Spam Filtering System in ADVANCES IN CASE-BASED REASONING
  • 2003-06-18. An Evaluation of the Usefulness of Case-Based Explanation in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2007-10. A note on Platt’s probabilistic outputs for support vector machines in MACHINE LEARNING
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2011-10. Operators for transforming kernels into quasi-local kernels that improve SVM accuracy in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 1990. Single-layer learning revisited: a stepwise procedure for building and training a neural network in NEUROCOMPUTING
  • 2009. A Scalable Noise Reduction Technique for Large Case-Based Systems in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2004. Editing Training Data for kNN Classifiers with Neural Network Ensemble in ADVANCES IN NEURAL NETWORKS – ISNN 2004
  • 2001-10. SSVM: A Smooth Support Vector Machine for Classification in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • 1994. Using k-d trees to improve the retrieval step in case-based reasoning in TOPICS IN CASE-BASED REASONING
  • 2006-10. Textual case-based reasoning for spam filtering: a comparison of feature-based and feature-free approaches in ARTIFICIAL INTELLIGENCE REVIEW
  • 2003-01-14. Competence-Guided Case-Base Editing Techniques in ADVANCES IN CASE-BASED REASONING
  • 2009. Fast Local Support Vector Machines for Large Datasets in MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION
  • 1991-01. Instance-based learning algorithms in MACHINE LEARNING
  • 2004. Explanations and Case-Based Reasoning: Foundational Issues in ADVANCES IN CASE-BASED REASONING
  • 2004. JColibri: An Object-Oriented Framework for Building CBR Systems in ADVANCES IN CASE-BASED REASONING
  • 2002-04. Advances in Instance Selection for Instance-Based Learning Algorithms in DATA MINING AND KNOWLEDGE DISCOVERY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10844-009-0101-z

    DOI

    http://dx.doi.org/10.1007/s10844-009-0101-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011411935


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Dipartimento di Ingegneria e Scienza dellInformazione, University of Trento, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Segata", 
            "givenName": "Nicola", 
            "id": "sg:person.0736227144.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Dipartimento di Ingegneria e Scienza dellInformazione, University of Trento, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blanzieri", 
            "givenName": "Enrico", 
            "id": "sg:person.013033541655.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dublin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.33695.3a", 
              "name": [
                "Dublin Institute of Technology, Dublin, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Delany", 
            "givenName": "Sarah Jane", 
            "id": "sg:person.010643273165.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010643273165.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College Dublin", 
              "id": "https://www.grid.ac/institutes/grid.7886.1", 
              "name": [
                "Computer Science, University College Dublin, Dublin, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cunningham", 
            "givenName": "P\u00e1draig", 
            "id": "sg:person.01055764455.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055764455.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-44593-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000557004", 
              "https://doi.org/10.1007/3-540-44593-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44593-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000557004", 
              "https://doi.org/10.1007/3-540-44593-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1415-47572004000400031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002569994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-010-0131-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003336852", 
              "https://doi.org/10.1007/s10844-010-0131-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976699300016557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003893144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014043630878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004080771", 
              "https://doi.org/10.1023/a:1014043630878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28647-9_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006112592", 
              "https://doi.org/10.1007/978-3-540-28647-9_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28647-9_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006112592", 
              "https://doi.org/10.1007/978-3-540-28647-9_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-76153-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006377855", 
              "https://doi.org/10.1007/978-3-642-76153-9_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-247-2.50066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007783502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011215321374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010116129", 
              "https://doi.org/10.1023/a:1011215321374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03070-3_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010416050", 
              "https://doi.org/10.1007/978-3-642-03070-3_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03070-3_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010416050", 
              "https://doi.org/10.1007/978-3-642-03070-3_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1961189.1961199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013637525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-008-0069-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014342738", 
              "https://doi.org/10.1007/s10844-008-0069-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-008-0069-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014342738", 
              "https://doi.org/10.1007/s10844-008-0069-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44593-5_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014350585", 
              "https://doi.org/10.1007/3-540-44593-5_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015717740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-007-9041-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017637062", 
              "https://doi.org/10.1007/s10462-007-9041-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-007-9041-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017637062", 
              "https://doi.org/10.1007/s10462-007-9041-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(02)00225-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021142870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(02)00225-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021142870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46119-1_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024318867", 
              "https://doi.org/10.1007/3-540-46119-1_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:apin.0000043559.83167.3d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025559048", 
              "https://doi.org/10.1023/b:apin.0000043559.83167.3d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02998-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029898046", 
              "https://doi.org/10.1007/978-3-642-02998-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02998-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029898046", 
              "https://doi.org/10.1007/978-3-642-02998-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976606775093927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030509050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007626913721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030839762", 
              "https://doi.org/10.1023/a:1007626913721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(81)90102-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031084373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(81)90102-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031084373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scico.2007.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032161459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219697", 
              "https://doi.org/10.1007/978-3-540-28631-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219697", 
              "https://doi.org/10.1007/978-3-540-28631-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035988634", 
              "https://doi.org/10.1007/978-3-540-28631-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035988634", 
              "https://doi.org/10.1007/978-3-540-28631-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58330-0_85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036675796", 
              "https://doi.org/10.1007/3-540-58330-0_85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artint.2007.04.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037109584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-307-3.50009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038878027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-007-5018-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039556605", 
              "https://doi.org/10.1007/s10994-007-5018-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1976.4309523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045533160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45006-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045669717", 
              "https://doi.org/10.1007/3-540-45006-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45006-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045669717", 
              "https://doi.org/10.1007/3-540-45006-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1143844.1143857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048278144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/088395100117124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049146258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049631378", 
              "https://doi.org/10.1007/bf00153759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00153759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049631378", 
              "https://doi.org/10.1007/bf00153759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049995848", 
              "https://doi.org/10.1007/978-3-540-28631-8_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28631-8_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049995848", 
              "https://doi.org/10.1007/978-3-540-28631-8_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1992.4.6.888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051218762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1995.7.1.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053313178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44527-7_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053625907", 
              "https://doi.org/10.1007/3-540-44527-7_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44527-7_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053625907", 
              "https://doi.org/10.1007/3-540-44527-7_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1937.10503522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058298184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1961.10482090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.991427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-c.1974.223827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061455879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2008.916090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061610744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1968.1054155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061646472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1972.1054809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1975.1055464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2007.190645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1008381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1972.4309137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/971697.602266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063175771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177731944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064402489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icbbe.2008.1009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093587404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isda.2005.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094058976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2006.1008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094208799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbms.2006.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094598185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbms.2006.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094598185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icis.2008.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094629421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2006.1119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094642013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icbbe.2008.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094685012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmlc.2003.1260115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094913125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.1994.576879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095616268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3001968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102728208"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-10", 
        "datePublishedReg": "2010-10-01", 
        "description": "To some extent the problem of noise reduction in machine learning has been finessed by the development of learning techniques that are noise-tolerant. However, it is difficult to make instance-based learning noise tolerant and noise reduction still plays an important role in k-nearest neighbour classification. There are also other motivations for noise reduction, for instance the elimination of noise may result in simpler models or data cleansing may be an end in itself. In this paper we present a novel approach to noise reduction based on local Support Vector Machines (LSVM) which brings the benefits of maximal margin classifiers to bear on noise reduction. This provides a more robust alternative to the majority rule on which almost all the existing noise reduction techniques are based. Roughly speaking, for each training example an SVM is trained on its neighbourhood and if the SVM classification for the central example disagrees with its actual class there is evidence in favour of removing it from the training set. We provide an empirical evaluation on 15 real datasets showing improved classification accuracy when using training data edited with our method as well as specific experiments regarding the spam filtering application domain. We present a further evaluation on two artificial datasets where we analyse two different types of noise (Gaussian feature noise and mislabelling noise) and the influence of different class densities. The conclusion is that LSVM noise reduction is significantly better than the other analysed algorithms for real datasets and for artificial datasets perturbed by Gaussian noise and in presence of uneven class densities.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10844-009-0101-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327483", 
            "issn": [
              "0925-9902", 
              "1573-7675"
            ], 
            "name": "Journal of Intelligent Information Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Noise reduction for instance-based learning with a local maximal margin approach", 
        "pagination": "301-331", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "365eeeef6aa4b929b61185d45de4a4d77387d084984159cd401b0eb17c195191"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10844-009-0101-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011411935"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10844-009-0101-z", 
          "https://app.dimensions.ai/details/publication/pub.1011411935"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10844-009-0101-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10844-009-0101-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10844-009-0101-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10844-009-0101-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10844-009-0101-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      89 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10844-009-0101-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nbe61c470984448e7ab0054aa1659e85e
    4 schema:citation sg:pub.10.1007/3-540-44527-7_17
    5 sg:pub.10.1007/3-540-44593-5_33
    6 sg:pub.10.1007/3-540-44593-5_9
    7 sg:pub.10.1007/3-540-45006-8_12
    8 sg:pub.10.1007/3-540-46119-1_27
    9 sg:pub.10.1007/3-540-58330-0_85
    10 sg:pub.10.1007/978-3-540-28631-8_11
    11 sg:pub.10.1007/978-3-540-28631-8_29
    12 sg:pub.10.1007/978-3-540-28631-8_4
    13 sg:pub.10.1007/978-3-540-28647-9_60
    14 sg:pub.10.1007/978-3-642-02998-1_24
    15 sg:pub.10.1007/978-3-642-03070-3_22
    16 sg:pub.10.1007/978-3-642-76153-9_5
    17 sg:pub.10.1007/bf00153759
    18 sg:pub.10.1007/bf00994018
    19 sg:pub.10.1007/s10462-007-9041-6
    20 sg:pub.10.1007/s10844-008-0069-0
    21 sg:pub.10.1007/s10844-010-0131-6
    22 sg:pub.10.1007/s10994-007-5018-6
    23 sg:pub.10.1023/a:1007626913721
    24 sg:pub.10.1023/a:1011215321374
    25 sg:pub.10.1023/a:1014043630878
    26 sg:pub.10.1023/b:apin.0000043559.83167.3d
    27 https://doi.org/10.1016/0031-3203(81)90102-3
    28 https://doi.org/10.1016/b978-1-55860-247-2.50066-8
    29 https://doi.org/10.1016/b978-1-55860-307-3.50009-5
    30 https://doi.org/10.1016/j.artint.2007.04.018
    31 https://doi.org/10.1016/j.scico.2007.02.004
    32 https://doi.org/10.1016/s0167-8655(02)00225-8
    33 https://doi.org/10.1080/01621459.1937.10503522
    34 https://doi.org/10.1080/01621459.1961.10482090
    35 https://doi.org/10.1080/088395100117124
    36 https://doi.org/10.1093/bioinformatics/btl346
    37 https://doi.org/10.1109/72.991427
    38 https://doi.org/10.1109/cbms.2006.65
    39 https://doi.org/10.1109/icbbe.2008.1009
    40 https://doi.org/10.1109/icbbe.2008.184
    41 https://doi.org/10.1109/icis.2008.67
    42 https://doi.org/10.1109/icmlc.2003.1260115
    43 https://doi.org/10.1109/icpr.1994.576879
    44 https://doi.org/10.1109/icpr.2006.1119
    45 https://doi.org/10.1109/igarss.2006.1008
    46 https://doi.org/10.1109/isda.2005.98
    47 https://doi.org/10.1109/t-c.1974.223827
    48 https://doi.org/10.1109/tgrs.2008.916090
    49 https://doi.org/10.1109/tit.1968.1054155
    50 https://doi.org/10.1109/tit.1972.1054809
    51 https://doi.org/10.1109/tit.1975.1055464
    52 https://doi.org/10.1109/tkde.2007.190645
    53 https://doi.org/10.1109/tpami.2002.1008381
    54 https://doi.org/10.1109/tsmc.1972.4309137
    55 https://doi.org/10.1109/tsmc.1976.4309523
    56 https://doi.org/10.1145/1143844.1143857
    57 https://doi.org/10.1145/1961189.1961199
    58 https://doi.org/10.1145/971697.602266
    59 https://doi.org/10.1162/089976606775093927
    60 https://doi.org/10.1162/089976699300016557
    61 https://doi.org/10.1162/neco.1992.4.6.888
    62 https://doi.org/10.1162/neco.1995.7.1.72
    63 https://doi.org/10.1214/aoms/1177731944
    64 https://doi.org/10.1590/s1415-47572004000400031
    65 https://doi.org/10.2307/3001968
    66 schema:datePublished 2010-10
    67 schema:datePublishedReg 2010-10-01
    68 schema:description To some extent the problem of noise reduction in machine learning has been finessed by the development of learning techniques that are noise-tolerant. However, it is difficult to make instance-based learning noise tolerant and noise reduction still plays an important role in k-nearest neighbour classification. There are also other motivations for noise reduction, for instance the elimination of noise may result in simpler models or data cleansing may be an end in itself. In this paper we present a novel approach to noise reduction based on local Support Vector Machines (LSVM) which brings the benefits of maximal margin classifiers to bear on noise reduction. This provides a more robust alternative to the majority rule on which almost all the existing noise reduction techniques are based. Roughly speaking, for each training example an SVM is trained on its neighbourhood and if the SVM classification for the central example disagrees with its actual class there is evidence in favour of removing it from the training set. We provide an empirical evaluation on 15 real datasets showing improved classification accuracy when using training data edited with our method as well as specific experiments regarding the spam filtering application domain. We present a further evaluation on two artificial datasets where we analyse two different types of noise (Gaussian feature noise and mislabelling noise) and the influence of different class densities. The conclusion is that LSVM noise reduction is significantly better than the other analysed algorithms for real datasets and for artificial datasets perturbed by Gaussian noise and in presence of uneven class densities.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N152ece31f4a54f17a223c7cccc32a2e6
    73 N75a15ec616ba405ea49163958a919020
    74 sg:journal.1327483
    75 schema:name Noise reduction for instance-based learning with a local maximal margin approach
    76 schema:pagination 301-331
    77 schema:productId N9e22d93ce32d40ad924eddf563f6073d
    78 N9fb6aa569d75441ba24c2e69b36dfe77
    79 Na9a52c63e5a747b9a2a1c03561da82ac
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011411935
    81 https://doi.org/10.1007/s10844-009-0101-z
    82 schema:sdDatePublished 2019-04-11T12:27
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N91a80df103dd429bb2f356826d92a6b3
    85 schema:url https://link.springer.com/10.1007%2Fs10844-009-0101-z
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N152ece31f4a54f17a223c7cccc32a2e6 schema:issueNumber 2
    90 rdf:type schema:PublicationIssue
    91 N2c7b8d241b3c4375b0fd16d98928329b rdf:first sg:person.013033541655.32
    92 rdf:rest N9f70aafc723e43089843e680c4c73366
    93 N75a15ec616ba405ea49163958a919020 schema:volumeNumber 35
    94 rdf:type schema:PublicationVolume
    95 N91a80df103dd429bb2f356826d92a6b3 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N9e22d93ce32d40ad924eddf563f6073d schema:name doi
    98 schema:value 10.1007/s10844-009-0101-z
    99 rdf:type schema:PropertyValue
    100 N9e76d48512414d838bedf334d35820ee rdf:first sg:person.01055764455.19
    101 rdf:rest rdf:nil
    102 N9f70aafc723e43089843e680c4c73366 rdf:first sg:person.010643273165.07
    103 rdf:rest N9e76d48512414d838bedf334d35820ee
    104 N9fb6aa569d75441ba24c2e69b36dfe77 schema:name dimensions_id
    105 schema:value pub.1011411935
    106 rdf:type schema:PropertyValue
    107 Na9a52c63e5a747b9a2a1c03561da82ac schema:name readcube_id
    108 schema:value 365eeeef6aa4b929b61185d45de4a4d77387d084984159cd401b0eb17c195191
    109 rdf:type schema:PropertyValue
    110 Nbe61c470984448e7ab0054aa1659e85e rdf:first sg:person.0736227144.03
    111 rdf:rest N2c7b8d241b3c4375b0fd16d98928329b
    112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Information and Computing Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Artificial Intelligence and Image Processing
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1327483 schema:issn 0925-9902
    119 1573-7675
    120 schema:name Journal of Intelligent Information Systems
    121 rdf:type schema:Periodical
    122 sg:person.01055764455.19 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
    123 schema:familyName Cunningham
    124 schema:givenName Pádraig
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055764455.19
    126 rdf:type schema:Person
    127 sg:person.010643273165.07 schema:affiliation https://www.grid.ac/institutes/grid.33695.3a
    128 schema:familyName Delany
    129 schema:givenName Sarah Jane
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010643273165.07
    131 rdf:type schema:Person
    132 sg:person.013033541655.32 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    133 schema:familyName Blanzieri
    134 schema:givenName Enrico
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32
    136 rdf:type schema:Person
    137 sg:person.0736227144.03 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    138 schema:familyName Segata
    139 schema:givenName Nicola
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03
    141 rdf:type schema:Person
    142 sg:pub.10.1007/3-540-44527-7_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053625907
    143 https://doi.org/10.1007/3-540-44527-7_17
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/3-540-44593-5_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014350585
    146 https://doi.org/10.1007/3-540-44593-5_33
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/3-540-44593-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000557004
    149 https://doi.org/10.1007/3-540-44593-5_9
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/3-540-45006-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045669717
    152 https://doi.org/10.1007/3-540-45006-8_12
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/3-540-46119-1_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024318867
    155 https://doi.org/10.1007/3-540-46119-1_27
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/3-540-58330-0_85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036675796
    158 https://doi.org/10.1007/3-540-58330-0_85
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-540-28631-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219697
    161 https://doi.org/10.1007/978-3-540-28631-8_11
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-540-28631-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049995848
    164 https://doi.org/10.1007/978-3-540-28631-8_29
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-3-540-28631-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035988634
    167 https://doi.org/10.1007/978-3-540-28631-8_4
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-540-28647-9_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006112592
    170 https://doi.org/10.1007/978-3-540-28647-9_60
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-642-02998-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029898046
    173 https://doi.org/10.1007/978-3-642-02998-1_24
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-3-642-03070-3_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010416050
    176 https://doi.org/10.1007/978-3-642-03070-3_22
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-642-76153-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006377855
    179 https://doi.org/10.1007/978-3-642-76153-9_5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf00153759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631378
    182 https://doi.org/10.1007/bf00153759
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    185 https://doi.org/10.1007/bf00994018
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10462-007-9041-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017637062
    188 https://doi.org/10.1007/s10462-007-9041-6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10844-008-0069-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014342738
    191 https://doi.org/10.1007/s10844-008-0069-0
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10844-010-0131-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003336852
    194 https://doi.org/10.1007/s10844-010-0131-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10994-007-5018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556605
    197 https://doi.org/10.1007/s10994-007-5018-6
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1023/a:1007626913721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030839762
    200 https://doi.org/10.1023/a:1007626913721
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1023/a:1011215321374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010116129
    203 https://doi.org/10.1023/a:1011215321374
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1023/a:1014043630878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004080771
    206 https://doi.org/10.1023/a:1014043630878
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1023/b:apin.0000043559.83167.3d schema:sameAs https://app.dimensions.ai/details/publication/pub.1025559048
    209 https://doi.org/10.1023/b:apin.0000043559.83167.3d
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/0031-3203(81)90102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031084373
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/b978-1-55860-247-2.50066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007783502
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/b978-1-55860-307-3.50009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038878027
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.artint.2007.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037109584
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.scico.2007.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032161459
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0167-8655(02)00225-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021142870
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1080/01621459.1937.10503522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298184
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1080/01621459.1961.10482090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299626
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1080/088395100117124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049146258
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/bioinformatics/btl346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015717740
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1109/72.991427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219719
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1109/cbms.2006.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094598185
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1109/icbbe.2008.1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093587404
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1109/icbbe.2008.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094685012
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1109/icis.2008.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094629421
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1109/icmlc.2003.1260115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094913125
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1109/icpr.1994.576879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095616268
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1109/icpr.2006.1119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094642013
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/igarss.2006.1008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094208799
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1109/isda.2005.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094058976
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1109/t-c.1974.223827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455879
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1109/tgrs.2008.916090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610744
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1109/tit.1968.1054155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646472
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1109/tit.1972.1054809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647094
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1109/tit.1975.1055464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647696
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1109/tkde.2007.190645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661708
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1109/tpami.2002.1008381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742376
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1109/tsmc.1972.4309137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792625
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1109/tsmc.1976.4309523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045533160
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1145/1143844.1143857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048278144
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1145/971697.602266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063175771
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1162/089976606775093927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030509050
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1162/089976699300016557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003893144
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1162/neco.1992.4.6.888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051218762
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1162/neco.1995.7.1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313178
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1214/aoms/1177731944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402489
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1590/s1415-47572004000400031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002569994
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.2307/3001968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102728208
    288 rdf:type schema:CreativeWork
    289 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
    290 schema:name Dipartimento di Ingegneria e Scienza dellInformazione, University of Trento, Trento, Italy
    291 rdf:type schema:Organization
    292 https://www.grid.ac/institutes/grid.33695.3a schema:alternateName Dublin Institute of Technology
    293 schema:name Dublin Institute of Technology, Dublin, Ireland
    294 rdf:type schema:Organization
    295 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
    296 schema:name Computer Science, University College Dublin, Dublin, Ireland
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...