A novel approach for process mining based on event types View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01-26

AUTHORS

Lijie Wen, Jianmin Wang, Wil M. P. van der Aalst, Biqing Huang, Jiaguang Sun

ABSTRACT

Despite the omnipresence of event logs in transactional information systems (cf. WFM, ERP, CRM, SCM, and B2B systems), historic information is rarely used to analyze the underlying processes. Process mining aims at improving this by providing techniques and tools for discovering process, control, data, organizational, and social structures from event logs, i.e., the basic idea of process mining is to diagnose business processes by mining event logs for knowledge. Given its potential and challenges it is no surprise that recently process mining has become a vivid research area. In this paper, a novel approach for process mining based on two event types, i.e., START and COMPLETE, is proposed. Information about the start and completion of tasks can be used to explicitly detect parallelism. The algorithm presented in this paper overcomes some of the limitations of existing algorithms such as the α-algorithm (e.g., short-loops) and therefore enhances the applicability of process mining. More... »

PAGES

163-190

References to SciGraph publications

  • 1997-09. Discovery of Frequent Episodes in Event Sequences in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2002-11-08. Process Mining: Discovering Direct Successors in Process Logs in DISCOVERY SCIENCE
  • 2001. Data Mining von Workflow-Protokollen zur teilautomatisierten Konstruktion von Prozeßmodellen in DATENBANKSYSTEME IN BÜRO, TECHNIK UND WISSENSCHAFT
  • 1989. Inductive inference, DFAs, and computational complexity in ANALOGICAL AND INDUCTIVE INFERENCE
  • 2007-03-02. Mining process models with non-free-choice constructs in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2000. Generic Linear Business Process Modeling in CONCEPTUAL MODELING FOR E-BUSINESS AND THE WEB
  • 2000. A Machine Learning Approach to Workflow Management in MACHINE LEARNING: ECML 2000
  • 2002-09-02. Discovering Workflow Performance Models from Timed Logs in ENGINEERING AND DEPLOYMENT OF COOPERATIVE INFORMATION SYSTEMS
  • 2005. The ProM Framework: A New Era in Process Mining Tool Support in APPLICATIONS AND THEORY OF PETRI NETS 2005
  • 2002-09-20. Process Miner — A Tool for Mining Process Schemes from Event-Based Data in LOGICS IN ARTIFICIAL INTELLIGENCE
  • 1998. Mining process models from workflow logs in ADVANCES IN DATABASE TECHNOLOGY — EDBT'98
  • 2006. Conformance Testing: Measuring the Fit and Appropriateness of Event Logs and Process Models in BUSINESS PROCESS MANAGEMENT WORKSHOPS
  • 2002-09-02. A Data Warehouse for Workflow Logs in ENGINEERING AND DEPLOYMENT OF COOPERATIVE INFORMATION SYSTEMS
  • 1990-03. Partial (set) 2-structures in ACTA INFORMATICA
  • 2004. Mining Social Networks: Uncovering Interaction Patterns in Business Processes in BUSINESS PROCESS MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10844-007-0052-1

    DOI

    http://dx.doi.org/10.1007/s10844-007-0052-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041618542


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Automation, Tsinghua University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "School of Software, Tsinghua University, Beijing, China", 
                "Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China", 
                "Department of Automation, Tsinghua University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wen", 
            "givenName": "Lijie", 
            "id": "sg:person.013640554311.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.419897.a", 
              "name": [
                "School of Software, Tsinghua University, Beijing, China", 
                "Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianmin", 
            "id": "sg:person.012303351315.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Technology Management, Eindhoven University of Technology, Eindhoven, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.6852.9", 
              "name": [
                "Department of Technology Management, Eindhoven University of Technology, Eindhoven, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Aalst", 
            "givenName": "Wil M. P.", 
            "id": "sg:person.014757056433.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757056433.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Automation, Tsinghua University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "Department of Automation, Tsinghua University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Biqing", 
            "id": "sg:person.016425610666.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425610666.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.419897.a", 
              "name": [
                "School of Software, Tsinghua University, Beijing, China", 
                "Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Jiaguang", 
            "id": "sg:person.011411464635.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1009748302351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005237640", 
              "https://doi.org/10.1023/a:1009748302351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11494744_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001460653", 
              "https://doi.org/10.1007/11494744_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56687-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029800331", 
              "https://doi.org/10.1007/978-3-642-56687-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45164-1_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019466628", 
              "https://doi.org/10.1007/3-540-45164-1_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36182-0_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036457083", 
              "https://doi.org/10.1007/3-540-36182-0_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45394-6_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025497879", 
              "https://doi.org/10.1007/3-540-45394-6_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-51734-0_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025007515", 
              "https://doi.org/10.1007/3-540-51734-0_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0101003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034410897", 
              "https://doi.org/10.1007/bfb0101003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00264611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047232716", 
              "https://doi.org/10.1007/bf00264611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-007-0065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012480132", 
              "https://doi.org/10.1007/s10618-007-0065-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11678564_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016978752", 
              "https://doi.org/10.1007/11678564_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45785-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038016921", 
              "https://doi.org/10.1007/3-540-45785-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45785-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043967823", 
              "https://doi.org/10.1007/3-540-45785-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45757-7_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016229235", 
              "https://doi.org/10.1007/3-540-45757-7_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-25970-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035824719", 
              "https://doi.org/10.1007/978-3-540-25970-1_16"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01-26", 
        "datePublishedReg": "2008-01-26", 
        "description": "Despite the omnipresence of event logs in transactional information systems (cf. WFM, ERP, CRM, SCM, and B2B systems), historic information is rarely used to analyze the underlying processes. Process mining aims at improving this by providing techniques and tools for discovering process, control, data, organizational, and social structures from event logs, i.e., the basic idea of process mining is to diagnose business processes by mining event logs for knowledge. Given its potential and challenges it is no surprise that recently process mining has become a vivid research area. In this paper, a novel approach for process mining based on two event types, i.e., START and COMPLETE, is proposed. Information about the start and completion of tasks can be used to explicitly detect parallelism. The algorithm presented in this paper overcomes some of the limitations of existing algorithms such as the \u03b1-algorithm (e.g., short-loops) and therefore enhances the applicability of process mining.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10844-007-0052-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4928291", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327483", 
            "issn": [
              "0925-9902", 
              "1573-7675"
            ], 
            "name": "Journal of Intelligent Information Systems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "process mining", 
          "event logs", 
          "mining event logs", 
          "transactional information systems", 
          "vivid research area", 
          "novel approach", 
          "completion of tasks", 
          "event types", 
          "business processes", 
          "information systems", 
          "mining", 
          "historic information", 
          "research area", 
          "algorithm", 
          "basic idea", 
          "logs", 
          "parallelism", 
          "information", 
          "task", 
          "tool", 
          "process", 
          "system", 
          "omnipresence", 
          "idea", 
          "applicability", 
          "technique", 
          "Complete", 
          "knowledge", 
          "limitations", 
          "data", 
          "types", 
          "social structure", 
          "surprise", 
          "area", 
          "control", 
          "completion", 
          "structure", 
          "start", 
          "potential", 
          "paper", 
          "approach"
        ], 
        "name": "A novel approach for process mining based on event types", 
        "pagination": "163-190", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041618542"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10844-007-0052-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10844-007-0052-1", 
          "https://app.dimensions.ai/details/publication/pub.1041618542"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_472.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10844-007-0052-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10844-007-0052-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10844-007-0052-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10844-007-0052-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10844-007-0052-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      22 PREDICATES      82 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10844-007-0052-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author N1e449fe2e56c432a9c9c8442893ad881
    5 schema:citation sg:pub.10.1007/11494744_25
    6 sg:pub.10.1007/11678564_15
    7 sg:pub.10.1007/3-540-36182-0_37
    8 sg:pub.10.1007/3-540-45164-1_19
    9 sg:pub.10.1007/3-540-45394-6_4
    10 sg:pub.10.1007/3-540-45757-7_47
    11 sg:pub.10.1007/3-540-45785-2_1
    12 sg:pub.10.1007/3-540-45785-2_4
    13 sg:pub.10.1007/3-540-51734-0_50
    14 sg:pub.10.1007/978-3-540-25970-1_16
    15 sg:pub.10.1007/978-3-642-56687-5_7
    16 sg:pub.10.1007/bf00264611
    17 sg:pub.10.1007/bfb0101003
    18 sg:pub.10.1007/s10618-007-0065-y
    19 sg:pub.10.1023/a:1009748302351
    20 schema:datePublished 2008-01-26
    21 schema:datePublishedReg 2008-01-26
    22 schema:description Despite the omnipresence of event logs in transactional information systems (cf. WFM, ERP, CRM, SCM, and B2B systems), historic information is rarely used to analyze the underlying processes. Process mining aims at improving this by providing techniques and tools for discovering process, control, data, organizational, and social structures from event logs, i.e., the basic idea of process mining is to diagnose business processes by mining event logs for knowledge. Given its potential and challenges it is no surprise that recently process mining has become a vivid research area. In this paper, a novel approach for process mining based on two event types, i.e., START and COMPLETE, is proposed. Information about the start and completion of tasks can be used to explicitly detect parallelism. The algorithm presented in this paper overcomes some of the limitations of existing algorithms such as the α-algorithm (e.g., short-loops) and therefore enhances the applicability of process mining.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf Nb92ba21f64b9462080b4137621adc878
    27 Ne8795261169f4c5084b4a2c4395d5bb5
    28 sg:journal.1327483
    29 schema:keywords Complete
    30 algorithm
    31 applicability
    32 approach
    33 area
    34 basic idea
    35 business processes
    36 completion
    37 completion of tasks
    38 control
    39 data
    40 event logs
    41 event types
    42 historic information
    43 idea
    44 information
    45 information systems
    46 knowledge
    47 limitations
    48 logs
    49 mining
    50 mining event logs
    51 novel approach
    52 omnipresence
    53 paper
    54 parallelism
    55 potential
    56 process
    57 process mining
    58 research area
    59 social structure
    60 start
    61 structure
    62 surprise
    63 system
    64 task
    65 technique
    66 tool
    67 transactional information systems
    68 types
    69 vivid research area
    70 schema:name A novel approach for process mining based on event types
    71 schema:pagination 163-190
    72 schema:productId N5093728274a344cb81d8c4acb4770973
    73 Na23fe626af494eac9a308ce32b4ef08b
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041618542
    75 https://doi.org/10.1007/s10844-007-0052-1
    76 schema:sdDatePublished 2022-05-20T07:25
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher Ned6fe0cdb60247b79ab13548453a2455
    79 schema:url https://doi.org/10.1007/s10844-007-0052-1
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N1e449fe2e56c432a9c9c8442893ad881 rdf:first sg:person.013640554311.55
    84 rdf:rest N75771965f0db4971b69bb963ae41c037
    85 N2307ec35d9984356b19a338970753d39 rdf:first sg:person.016425610666.81
    86 rdf:rest N5cd511f348f6480fb16e6232d601735e
    87 N5093728274a344cb81d8c4acb4770973 schema:name doi
    88 schema:value 10.1007/s10844-007-0052-1
    89 rdf:type schema:PropertyValue
    90 N5cd511f348f6480fb16e6232d601735e rdf:first sg:person.011411464635.59
    91 rdf:rest rdf:nil
    92 N75771965f0db4971b69bb963ae41c037 rdf:first sg:person.012303351315.43
    93 rdf:rest N81f35d855efa463382cd3d84f9a27e59
    94 N81f35d855efa463382cd3d84f9a27e59 rdf:first sg:person.014757056433.19
    95 rdf:rest N2307ec35d9984356b19a338970753d39
    96 Na23fe626af494eac9a308ce32b4ef08b schema:name dimensions_id
    97 schema:value pub.1041618542
    98 rdf:type schema:PropertyValue
    99 Nb92ba21f64b9462080b4137621adc878 schema:issueNumber 2
    100 rdf:type schema:PublicationIssue
    101 Ne8795261169f4c5084b4a2c4395d5bb5 schema:volumeNumber 32
    102 rdf:type schema:PublicationVolume
    103 Ned6fe0cdb60247b79ab13548453a2455 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Information and Computing Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Artificial Intelligence and Image Processing
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Information Systems
    113 rdf:type schema:DefinedTerm
    114 sg:grant.4928291 http://pending.schema.org/fundedItem sg:pub.10.1007/s10844-007-0052-1
    115 rdf:type schema:MonetaryGrant
    116 sg:journal.1327483 schema:issn 0925-9902
    117 1573-7675
    118 schema:name Journal of Intelligent Information Systems
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.419897.a
    122 schema:familyName Sun
    123 schema:givenName Jiaguang
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
    125 rdf:type schema:Person
    126 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.419897.a
    127 schema:familyName Wang
    128 schema:givenName Jianmin
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
    130 rdf:type schema:Person
    131 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
    132 schema:familyName Wen
    133 schema:givenName Lijie
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
    135 rdf:type schema:Person
    136 sg:person.014757056433.19 schema:affiliation grid-institutes:grid.6852.9
    137 schema:familyName van der Aalst
    138 schema:givenName Wil M. P.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757056433.19
    140 rdf:type schema:Person
    141 sg:person.016425610666.81 schema:affiliation grid-institutes:grid.12527.33
    142 schema:familyName Huang
    143 schema:givenName Biqing
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425610666.81
    145 rdf:type schema:Person
    146 sg:pub.10.1007/11494744_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001460653
    147 https://doi.org/10.1007/11494744_25
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/11678564_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016978752
    150 https://doi.org/10.1007/11678564_15
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/3-540-36182-0_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036457083
    153 https://doi.org/10.1007/3-540-36182-0_37
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/3-540-45164-1_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019466628
    156 https://doi.org/10.1007/3-540-45164-1_19
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/3-540-45394-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025497879
    159 https://doi.org/10.1007/3-540-45394-6_4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/3-540-45757-7_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229235
    162 https://doi.org/10.1007/3-540-45757-7_47
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/3-540-45785-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043967823
    165 https://doi.org/10.1007/3-540-45785-2_1
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/3-540-45785-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038016921
    168 https://doi.org/10.1007/3-540-45785-2_4
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/3-540-51734-0_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025007515
    171 https://doi.org/10.1007/3-540-51734-0_50
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-3-540-25970-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035824719
    174 https://doi.org/10.1007/978-3-540-25970-1_16
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-3-642-56687-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029800331
    177 https://doi.org/10.1007/978-3-642-56687-5_7
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/bf00264611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047232716
    180 https://doi.org/10.1007/bf00264611
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bfb0101003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034410897
    183 https://doi.org/10.1007/bfb0101003
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10618-007-0065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480132
    186 https://doi.org/10.1007/s10618-007-0065-y
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1023/a:1009748302351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005237640
    189 https://doi.org/10.1023/a:1009748302351
    190 rdf:type schema:CreativeWork
    191 grid-institutes:grid.12527.33 schema:alternateName Department of Automation, Tsinghua University, Beijing, China
    192 schema:name Department of Automation, Tsinghua University, Beijing, China
    193 Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China
    194 School of Software, Tsinghua University, Beijing, China
    195 rdf:type schema:Organization
    196 grid-institutes:grid.419897.a schema:alternateName Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China
    197 schema:name Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory for Information Science and Technology (TNList), 100084, Beijing, P.R. China
    198 School of Software, Tsinghua University, Beijing, China
    199 rdf:type schema:Organization
    200 grid-institutes:grid.6852.9 schema:alternateName Department of Technology Management, Eindhoven University of Technology, Eindhoven, The Netherlands
    201 schema:name Department of Technology Management, Eindhoven University of Technology, Eindhoven, The Netherlands
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...