Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-07

AUTHORS

M. Ebrahimizadeh Abrishami, A. Kompany, S. M. Hosseini

ABSTRACT

Polycrystalline ZnO doped with MnO, from 2 to 15 mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient α decreased with the increase in doping level. 2 mol% Mn doped ceramic sintered at 1100 °C exhibited the highest nonlinear coefficient, α = 40. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300 °C showed not only high nonlinearity, but also high stability under DC stress. More... »

PAGES

125-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0

DOI

http://dx.doi.org/10.1007/s10832-012-9753-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037539255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Neyshabur, Neyshabur, Iran", 
          "id": "http://www.grid.ac/institutes/grid.502998.f", 
          "name": [
            "Department of Physics, University of Neyshabur, Neyshabur, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebrahimizadeh Abrishami", 
        "givenName": "M.", 
        "id": "sg:person.013304530227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304530227.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kompany", 
        "givenName": "A.", 
        "id": "sg:person.07740365114.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740365114.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosseini", 
        "givenName": "S. M.", 
        "id": "sg:person.015422476353.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422476353.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10832-007-9219-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009972738", 
          "https://doi.org/10.1007/s10832-007-9219-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10832-006-7112-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000594097", 
          "https://doi.org/10.1007/s10832-006-7112-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jecr.0000015668.26785.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051105419", 
          "https://doi.org/10.1023/b:jecr.0000015668.26785.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009917516517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045212842", 
          "https://doi.org/10.1023/a:1009917516517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10832-010-9614-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034448788", 
          "https://doi.org/10.1007/s10832-010-9614-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07-07", 
    "datePublishedReg": "2012-07-07", 
    "description": "Polycrystalline ZnO doped with MnO, from 2 to 15\u00a0mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient \u03b1 decreased with the increase in doping level. 2\u00a0mol% Mn doped ceramic sintered at 1100\u00a0\u00b0C exhibited the highest nonlinear coefficient, \u03b1\u2009=\u200940. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300\u00a0\u00b0C showed not only high nonlinearity, but also high stability under DC stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10832-012-9753-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052646", 
        "issn": [
          "1385-3449", 
          "1573-8663"
        ], 
        "name": "Journal of Electroceramics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "varistor behavior", 
      "DC stress", 
      "ZnO ceramics", 
      "nonlinear coefficient \u03b1", 
      "current density curves", 
      "lower grain size", 
      "V-I characteristics", 
      "high nonlinear coefficient", 
      "nanosized precursors", 
      "zinc interstitial defects", 
      "ZnO varistors", 
      "microstructural uniformity", 
      "undoped ceramics", 
      "high microstructural uniformity", 
      "grain boundaries", 
      "grain size", 
      "phase evolution", 
      "electric field", 
      "polycrystalline ZnO", 
      "ceramics", 
      "SEM images", 
      "Mn doping", 
      "high nonlinearity", 
      "oxidation process", 
      "nonlinear coefficient", 
      "breakdown field EB", 
      "stability test", 
      "high stability", 
      "density curves", 
      "interstitial defects", 
      "coefficient \u03b1", 
      "varistors", 
      "microstructure", 
      "ZnO", 
      "great merit", 
      "doping", 
      "stress", 
      "uniformity", 
      "behavior", 
      "nonlinearity", 
      "MnO", 
      "temperature", 
      "nanoparticles", 
      "Mn", 
      "stability", 
      "coefficient", 
      "merits", 
      "boundaries", 
      "precursors", 
      "specimens", 
      "field", 
      "characteristics", 
      "process", 
      "size", 
      "curves", 
      "defects", 
      "test", 
      "images", 
      "increase", 
      "effect", 
      "evolution", 
      "EB", 
      "samples", 
      "levels"
    ], 
    "name": "Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors", 
    "pagination": "125-132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037539255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10832-012-9753-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10832-012-9753-0", 
      "https://app.dimensions.ai/details/publication/pub.1037539255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10832-012-9753-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      93 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10832-012-9753-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na83228a0c674402bbef2b4e86424ad09
4 schema:citation sg:pub.10.1007/s10832-006-7112-8
5 sg:pub.10.1007/s10832-007-9219-y
6 sg:pub.10.1007/s10832-010-9614-7
7 sg:pub.10.1023/a:1009917516517
8 sg:pub.10.1023/b:jecr.0000015668.26785.89
9 schema:datePublished 2012-07-07
10 schema:datePublishedReg 2012-07-07
11 schema:description Polycrystalline ZnO doped with MnO, from 2 to 15 mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient α decreased with the increase in doping level. 2 mol% Mn doped ceramic sintered at 1100 °C exhibited the highest nonlinear coefficient, α = 40. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300 °C showed not only high nonlinearity, but also high stability under DC stress.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N95e375b4d8d14ba9bb2c875259074752
15 Nfeb83a2c0a30411490953b866526f666
16 sg:journal.1052646
17 schema:keywords DC stress
18 EB
19 Mn
20 Mn doping
21 MnO
22 SEM images
23 V-I characteristics
24 ZnO
25 ZnO ceramics
26 ZnO varistors
27 behavior
28 boundaries
29 breakdown field EB
30 ceramics
31 characteristics
32 coefficient
33 coefficient α
34 current density curves
35 curves
36 defects
37 density curves
38 doping
39 effect
40 electric field
41 evolution
42 field
43 grain boundaries
44 grain size
45 great merit
46 high microstructural uniformity
47 high nonlinear coefficient
48 high nonlinearity
49 high stability
50 images
51 increase
52 interstitial defects
53 levels
54 lower grain size
55 merits
56 microstructural uniformity
57 microstructure
58 nanoparticles
59 nanosized precursors
60 nonlinear coefficient
61 nonlinear coefficient α
62 nonlinearity
63 oxidation process
64 phase evolution
65 polycrystalline ZnO
66 precursors
67 process
68 samples
69 size
70 specimens
71 stability
72 stability test
73 stress
74 temperature
75 test
76 undoped ceramics
77 uniformity
78 varistor behavior
79 varistors
80 zinc interstitial defects
81 schema:name Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors
82 schema:pagination 125-132
83 schema:productId N321bdab7c6874e3c863be13f01461777
84 N79ec176374e24e579d3fde2e6945481f
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037539255
86 https://doi.org/10.1007/s10832-012-9753-0
87 schema:sdDatePublished 2022-08-04T17:01
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N35798b15d5154c06a393e4ecdc3c044d
90 schema:url https://doi.org/10.1007/s10832-012-9753-0
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N321bdab7c6874e3c863be13f01461777 schema:name dimensions_id
95 schema:value pub.1037539255
96 rdf:type schema:PropertyValue
97 N35798b15d5154c06a393e4ecdc3c044d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N79ec176374e24e579d3fde2e6945481f schema:name doi
100 schema:value 10.1007/s10832-012-9753-0
101 rdf:type schema:PropertyValue
102 N91e7762ffe1a4602a9fc3b5e9784df64 rdf:first sg:person.015422476353.92
103 rdf:rest rdf:nil
104 N95e375b4d8d14ba9bb2c875259074752 schema:volumeNumber 29
105 rdf:type schema:PublicationVolume
106 Na83228a0c674402bbef2b4e86424ad09 rdf:first sg:person.013304530227.61
107 rdf:rest Nd24a13888c1a4c17bbd91c1370607302
108 Nd24a13888c1a4c17bbd91c1370607302 rdf:first sg:person.07740365114.16
109 rdf:rest N91e7762ffe1a4602a9fc3b5e9784df64
110 Nfeb83a2c0a30411490953b866526f666 schema:issueNumber 2
111 rdf:type schema:PublicationIssue
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1052646 schema:issn 1385-3449
119 1573-8663
120 schema:name Journal of Electroceramics
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.013304530227.61 schema:affiliation grid-institutes:grid.502998.f
124 schema:familyName Ebrahimizadeh Abrishami
125 schema:givenName M.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304530227.61
127 rdf:type schema:Person
128 sg:person.015422476353.92 schema:affiliation grid-institutes:grid.411301.6
129 schema:familyName Hosseini
130 schema:givenName S. M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422476353.92
132 rdf:type schema:Person
133 sg:person.07740365114.16 schema:affiliation grid-institutes:grid.411301.6
134 schema:familyName Kompany
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740365114.16
137 rdf:type schema:Person
138 sg:pub.10.1007/s10832-006-7112-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000594097
139 https://doi.org/10.1007/s10832-006-7112-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10832-007-9219-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009972738
142 https://doi.org/10.1007/s10832-007-9219-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10832-010-9614-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034448788
145 https://doi.org/10.1007/s10832-010-9614-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1009917516517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045212842
148 https://doi.org/10.1023/a:1009917516517
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/b:jecr.0000015668.26785.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051105419
151 https://doi.org/10.1023/b:jecr.0000015668.26785.89
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.411301.6 schema:alternateName Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran
154 schema:name Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran
155 rdf:type schema:Organization
156 grid-institutes:grid.502998.f schema:alternateName Department of Physics, University of Neyshabur, Neyshabur, Iran
157 schema:name Department of Physics, University of Neyshabur, Neyshabur, Iran
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...