Ontology type: schema:ScholarlyArticle
2012-07-07
AUTHORSM. Ebrahimizadeh Abrishami, A. Kompany, S. M. Hosseini
ABSTRACTPolycrystalline ZnO doped with MnO, from 2 to 15 mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient α decreased with the increase in doping level. 2 mol% Mn doped ceramic sintered at 1100 °C exhibited the highest nonlinear coefficient, α = 40. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300 °C showed not only high nonlinearity, but also high stability under DC stress. More... »
PAGES125-132
http://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0
DOIhttp://dx.doi.org/10.1007/s10832-012-9753-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037539255
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Neyshabur, Neyshabur, Iran",
"id": "http://www.grid.ac/institutes/grid.502998.f",
"name": [
"Department of Physics, University of Neyshabur, Neyshabur, Iran"
],
"type": "Organization"
},
"familyName": "Ebrahimizadeh Abrishami",
"givenName": "M.",
"id": "sg:person.013304530227.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304530227.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran",
"id": "http://www.grid.ac/institutes/grid.411301.6",
"name": [
"Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran"
],
"type": "Organization"
},
"familyName": "Kompany",
"givenName": "A.",
"id": "sg:person.07740365114.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740365114.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran",
"id": "http://www.grid.ac/institutes/grid.411301.6",
"name": [
"Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran"
],
"type": "Organization"
},
"familyName": "Hosseini",
"givenName": "S. M.",
"id": "sg:person.015422476353.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422476353.92"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10832-007-9219-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009972738",
"https://doi.org/10.1007/s10832-007-9219-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10832-006-7112-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000594097",
"https://doi.org/10.1007/s10832-006-7112-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:jecr.0000015668.26785.89",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051105419",
"https://doi.org/10.1023/b:jecr.0000015668.26785.89"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009917516517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045212842",
"https://doi.org/10.1023/a:1009917516517"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10832-010-9614-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034448788",
"https://doi.org/10.1007/s10832-010-9614-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-07-07",
"datePublishedReg": "2012-07-07",
"description": "Polycrystalline ZnO doped with MnO, from 2 to 15\u00a0mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient \u03b1 decreased with the increase in doping level. 2\u00a0mol% Mn doped ceramic sintered at 1100\u00a0\u00b0C exhibited the highest nonlinear coefficient, \u03b1\u2009=\u200940. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300\u00a0\u00b0C showed not only high nonlinearity, but also high stability under DC stress.",
"genre": "article",
"id": "sg:pub.10.1007/s10832-012-9753-0",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052646",
"issn": [
"1385-3449",
"1573-8663"
],
"name": "Journal of Electroceramics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "29"
}
],
"keywords": [
"varistor behavior",
"DC stress",
"ZnO ceramics",
"nonlinear coefficient \u03b1",
"current density curves",
"lower grain size",
"V-I characteristics",
"high nonlinear coefficient",
"nanosized precursors",
"zinc interstitial defects",
"ZnO varistors",
"microstructural uniformity",
"undoped ceramics",
"high microstructural uniformity",
"grain boundaries",
"grain size",
"phase evolution",
"electric field",
"polycrystalline ZnO",
"ceramics",
"SEM images",
"Mn doping",
"high nonlinearity",
"oxidation process",
"nonlinear coefficient",
"breakdown field EB",
"stability test",
"high stability",
"density curves",
"interstitial defects",
"coefficient \u03b1",
"varistors",
"microstructure",
"ZnO",
"great merit",
"doping",
"stress",
"uniformity",
"behavior",
"nonlinearity",
"MnO",
"temperature",
"nanoparticles",
"Mn",
"stability",
"coefficient",
"merits",
"boundaries",
"precursors",
"specimens",
"field",
"characteristics",
"process",
"size",
"curves",
"defects",
"test",
"images",
"increase",
"effect",
"evolution",
"EB",
"samples",
"levels"
],
"name": "Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors",
"pagination": "125-132",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037539255"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10832-012-9753-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10832-012-9753-0",
"https://app.dimensions.ai/details/publication/pub.1037539255"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_578.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10832-012-9753-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10832-012-9753-0'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
21 PREDICATES
93 URIs
80 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10832-012-9753-0 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Na83228a0c674402bbef2b4e86424ad09 |
4 | ″ | schema:citation | sg:pub.10.1007/s10832-006-7112-8 |
5 | ″ | ″ | sg:pub.10.1007/s10832-007-9219-y |
6 | ″ | ″ | sg:pub.10.1007/s10832-010-9614-7 |
7 | ″ | ″ | sg:pub.10.1023/a:1009917516517 |
8 | ″ | ″ | sg:pub.10.1023/b:jecr.0000015668.26785.89 |
9 | ″ | schema:datePublished | 2012-07-07 |
10 | ″ | schema:datePublishedReg | 2012-07-07 |
11 | ″ | schema:description | Polycrystalline ZnO doped with MnO, from 2 to 15 mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient α decreased with the increase in doping level. 2 mol% Mn doped ceramic sintered at 1100 °C exhibited the highest nonlinear coefficient, α = 40. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300 °C showed not only high nonlinearity, but also high stability under DC stress. |
12 | ″ | schema:genre | article |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N95e375b4d8d14ba9bb2c875259074752 |
15 | ″ | ″ | Nfeb83a2c0a30411490953b866526f666 |
16 | ″ | ″ | sg:journal.1052646 |
17 | ″ | schema:keywords | DC stress |
18 | ″ | ″ | EB |
19 | ″ | ″ | Mn |
20 | ″ | ″ | Mn doping |
21 | ″ | ″ | MnO |
22 | ″ | ″ | SEM images |
23 | ″ | ″ | V-I characteristics |
24 | ″ | ″ | ZnO |
25 | ″ | ″ | ZnO ceramics |
26 | ″ | ″ | ZnO varistors |
27 | ″ | ″ | behavior |
28 | ″ | ″ | boundaries |
29 | ″ | ″ | breakdown field EB |
30 | ″ | ″ | ceramics |
31 | ″ | ″ | characteristics |
32 | ″ | ″ | coefficient |
33 | ″ | ″ | coefficient α |
34 | ″ | ″ | current density curves |
35 | ″ | ″ | curves |
36 | ″ | ″ | defects |
37 | ″ | ″ | density curves |
38 | ″ | ″ | doping |
39 | ″ | ″ | effect |
40 | ″ | ″ | electric field |
41 | ″ | ″ | evolution |
42 | ″ | ″ | field |
43 | ″ | ″ | grain boundaries |
44 | ″ | ″ | grain size |
45 | ″ | ″ | great merit |
46 | ″ | ″ | high microstructural uniformity |
47 | ″ | ″ | high nonlinear coefficient |
48 | ″ | ″ | high nonlinearity |
49 | ″ | ″ | high stability |
50 | ″ | ″ | images |
51 | ″ | ″ | increase |
52 | ″ | ″ | interstitial defects |
53 | ″ | ″ | levels |
54 | ″ | ″ | lower grain size |
55 | ″ | ″ | merits |
56 | ″ | ″ | microstructural uniformity |
57 | ″ | ″ | microstructure |
58 | ″ | ″ | nanoparticles |
59 | ″ | ″ | nanosized precursors |
60 | ″ | ″ | nonlinear coefficient |
61 | ″ | ″ | nonlinear coefficient α |
62 | ″ | ″ | nonlinearity |
63 | ″ | ″ | oxidation process |
64 | ″ | ″ | phase evolution |
65 | ″ | ″ | polycrystalline ZnO |
66 | ″ | ″ | precursors |
67 | ″ | ″ | process |
68 | ″ | ″ | samples |
69 | ″ | ″ | size |
70 | ″ | ″ | specimens |
71 | ″ | ″ | stability |
72 | ″ | ″ | stability test |
73 | ″ | ″ | stress |
74 | ″ | ″ | temperature |
75 | ″ | ″ | test |
76 | ″ | ″ | undoped ceramics |
77 | ″ | ″ | uniformity |
78 | ″ | ″ | varistor behavior |
79 | ″ | ″ | varistors |
80 | ″ | ″ | zinc interstitial defects |
81 | ″ | schema:name | Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors |
82 | ″ | schema:pagination | 125-132 |
83 | ″ | schema:productId | N321bdab7c6874e3c863be13f01461777 |
84 | ″ | ″ | N79ec176374e24e579d3fde2e6945481f |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037539255 |
86 | ″ | ″ | https://doi.org/10.1007/s10832-012-9753-0 |
87 | ″ | schema:sdDatePublished | 2022-08-04T17:01 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | N35798b15d5154c06a393e4ecdc3c044d |
90 | ″ | schema:url | https://doi.org/10.1007/s10832-012-9753-0 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | articles |
93 | ″ | rdf:type | schema:ScholarlyArticle |
94 | N321bdab7c6874e3c863be13f01461777 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1037539255 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N35798b15d5154c06a393e4ecdc3c044d | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | N79ec176374e24e579d3fde2e6945481f | schema:name | doi |
100 | ″ | schema:value | 10.1007/s10832-012-9753-0 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N91e7762ffe1a4602a9fc3b5e9784df64 | rdf:first | sg:person.015422476353.92 |
103 | ″ | rdf:rest | rdf:nil |
104 | N95e375b4d8d14ba9bb2c875259074752 | schema:volumeNumber | 29 |
105 | ″ | rdf:type | schema:PublicationVolume |
106 | Na83228a0c674402bbef2b4e86424ad09 | rdf:first | sg:person.013304530227.61 |
107 | ″ | rdf:rest | Nd24a13888c1a4c17bbd91c1370607302 |
108 | Nd24a13888c1a4c17bbd91c1370607302 | rdf:first | sg:person.07740365114.16 |
109 | ″ | rdf:rest | N91e7762ffe1a4602a9fc3b5e9784df64 |
110 | Nfeb83a2c0a30411490953b866526f666 | schema:issueNumber | 2 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Engineering |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Materials Engineering |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1052646 | schema:issn | 1385-3449 |
119 | ″ | ″ | 1573-8663 |
120 | ″ | schema:name | Journal of Electroceramics |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.013304530227.61 | schema:affiliation | grid-institutes:grid.502998.f |
124 | ″ | schema:familyName | Ebrahimizadeh Abrishami |
125 | ″ | schema:givenName | M. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013304530227.61 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.015422476353.92 | schema:affiliation | grid-institutes:grid.411301.6 |
129 | ″ | schema:familyName | Hosseini |
130 | ″ | schema:givenName | S. M. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422476353.92 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.07740365114.16 | schema:affiliation | grid-institutes:grid.411301.6 |
134 | ″ | schema:familyName | Kompany |
135 | ″ | schema:givenName | A. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740365114.16 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/s10832-006-7112-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000594097 |
139 | ″ | ″ | https://doi.org/10.1007/s10832-006-7112-8 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1007/s10832-007-9219-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009972738 |
142 | ″ | ″ | https://doi.org/10.1007/s10832-007-9219-y |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/s10832-010-9614-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034448788 |
145 | ″ | ″ | https://doi.org/10.1007/s10832-010-9614-7 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1023/a:1009917516517 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045212842 |
148 | ″ | ″ | https://doi.org/10.1023/a:1009917516517 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1023/b:jecr.0000015668.26785.89 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051105419 |
151 | ″ | ″ | https://doi.org/10.1023/b:jecr.0000015668.26785.89 |
152 | ″ | rdf:type | schema:CreativeWork |
153 | grid-institutes:grid.411301.6 | schema:alternateName | Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran |
154 | ″ | schema:name | Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad, Iran |
155 | ″ | rdf:type | schema:Organization |
156 | grid-institutes:grid.502998.f | schema:alternateName | Department of Physics, University of Neyshabur, Neyshabur, Iran |
157 | ″ | schema:name | Department of Physics, University of Neyshabur, Neyshabur, Iran |
158 | ″ | rdf:type | schema:Organization |