A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-16

AUTHORS

Jiwei Zhang, Yuxiu Shao, Aaditya V. Rangan, Louis Tao

ABSTRACT

Homogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks. The population dynamics models derived here successfully capture the so-called multiple-firing events (MFEs), which emerge naturally in fluctuation-driven networks of strongly coupled neurons. Although these MFEs likely play a crucial role in the generation of the neuronal avalanches observed in vitro and in vivo, the mechanisms underlying these MFEs cannot easily be understood using standard population dynamic models. Using our PEA formalism, we systematically generate a sequence of model reductions, going from Master equations, to Fokker-Planck equations, and finally, to an augmented system of ordinary differential equations. Furthermore, we show that these reductions can faithfully describe the heterogeneous dynamic regimes underlying the generation of MFEs in strongly coupled conductance-based integrate-and-fire neuronal networks. More... »

PAGES

1-22

References to SciGraph publications

  • 2014-08. The functional architecture of the ventral temporal cortex and its role in categorization in NATURE REVIEWS NEUROSCIENCE
  • 2015-12. Path-Integral Methods for Analyzing the Effects of Fluctuations in Stochastic Hybrid Neural Networks in THE JOURNAL OF MATHEMATICAL NEUROSCIENCE
  • 2010-04. Multiplicatively interacting point processes and applications to neural modeling in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2003-10. Spontaneously emerging cortical representations of visual attributes in NATURE
  • 2013-06. Dynamics of spiking neurons: between homogeneity and synchrony in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2000-06. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex in NATURE NEUROSCIENCE
  • 2014-04. Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2000-01. A Population Density Approach That Facilitates Large-Scale Modeling of Neural Networks: Analysis and an Application to Orientation Tuning in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2000-05. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2016-11. On the Dynamics of Random Neuronal Networks in JOURNAL OF STATISTICAL PHYSICS
  • 2010-03. Stimulus onset quenches neural variability: a widespread cortical phenomenon in NATURE NEUROSCIENCE
  • 2012-11. Slow dynamics and high variability in balanced cortical networks with clustered connections in NATURE NEUROSCIENCE
  • 2018-02. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2013-10. Emergent dynamics in a model of visual cortex in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2003-09. The high-conductance state of neocortical neurons in vivo in NATURE REVIEWS NEUROSCIENCE
  • 2014-08. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2015-04. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1996-03. Chaos and synchrony in a model of a hypercolumn in visual cortex in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2002-09. States of High Conductance in a Large-Scale Model of the Visual Cortex in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10827-019-00712-w

    DOI

    http://dx.doi.org/10.1007/s10827-019-00712-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112260184

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30788694


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wuhan University", 
              "id": "https://www.grid.ac/institutes/grid.49470.3e", 
              "name": [
                "School of Mathematics and Statistics, Wuhan University, 430072, Wuhan, China", 
                "Hubei Key Laboratory of Computational Science, Wuhan University, 430072, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jiwei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871, Beijing, China", 
                "Center for Quantitative Biology, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Yuxiu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Courant Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.482020.c", 
              "name": [
                "Courant Institute of Mathematical Sciences, New York University, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rangan", 
            "givenName": "Aaditya V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871, Beijing, China", 
                "Center for Quantitative Biology, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tao", 
            "givenName": "Louis", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.0904089106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001155288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0904089106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001155288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008925309027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001166884", 
              "https://doi.org/10.1023/a:1008925309027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0896-6273(00)00135-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001518064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0401906101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001589506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.26.15706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002575633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fncom.2011.00028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004322116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0000439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005384319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3737-05d.2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005398705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006352401", 
              "https://doi.org/10.1038/nature02078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006352401", 
              "https://doi.org/10.1038/nature02078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.neuro.051508.135603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007111127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3127-11.2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010108206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1085/jgp.59.6.734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010158724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1099745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010299182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020158106603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013278536", 
              "https://doi.org/10.1023/a:1020158106603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.1677-11.2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014546418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2009.02-09-960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014936801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1001056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017015458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.031118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019074984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.031118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019074984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.4637-10.2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020952985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/neuro.01.034.2008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024893049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-013-0445-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024935169", 
              "https://doi.org/10.1007/s10827-013-0445-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-013-0445-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024935169", 
              "https://doi.org/10.1007/s10827-013-0445-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976602320264015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025183857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025880009", 
              "https://doi.org/10.1038/nrn1198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025880009", 
              "https://doi.org/10.1038/nrn1198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13408-014-0016-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027900895", 
              "https://doi.org/10.1186/s13408-014-0016-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13408-014-0016-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027900895", 
              "https://doi.org/10.1186/s13408-014-0016-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.178101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029019316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.178101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029019316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2008.02-07-474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029277212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3791/2949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029748209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030340966", 
              "https://doi.org/10.1038/nn.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030340966", 
              "https://doi.org/10.1038/nn.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030340966", 
              "https://doi.org/10.1038/nn.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976699300016179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030739818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-009-0204-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030934120", 
              "https://doi.org/10.1007/s10827-009-0204-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-009-0204-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030934120", 
              "https://doi.org/10.1007/s10827-009-0204-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-016-1622-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096256", 
              "https://doi.org/10.1007/s10955-016-1622-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-016-1622-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096256", 
              "https://doi.org/10.1007/s10955-016-1622-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2009.09.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034167570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-014-0543-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034382051", 
              "https://doi.org/10.1007/s10827-014-0543-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3508-05.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034396255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00158335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035039058", 
              "https://doi.org/10.1007/bf00158335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00158335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035039058", 
              "https://doi.org/10.1007/bf00158335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.01070.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035604084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn3747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036097170", 
              "https://doi.org/10.1038/nrn3747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-013-0488-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037262720", 
              "https://doi.org/10.1007/s10827-013-0488-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0896-6273(00)80821-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038107317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.066118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038135021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.066118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038135021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.5990-11.2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038585845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00953.2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040388186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-neuro-062111-150444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040574786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-013-0472-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041459113", 
              "https://doi.org/10.1007/s10827-013-0472-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2010.11.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042182713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2009.02-08-710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044534719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.5106-04.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045857715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1085/jgp.59.6.767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046139818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046622105", 
              "https://doi.org/10.1038/75797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046622105", 
              "https://doi.org/10.1038/75797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008912914816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049294956", 
              "https://doi.org/10.1023/a:1008912914816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-012-0429-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052682282", 
              "https://doi.org/10.1007/s10827-012-0429-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052719915", 
              "https://doi.org/10.1038/nn.3220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052793819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fncom.2011.00025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053342803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystems.2006.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053702096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0954-898x_11_4_301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059115760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.2259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.2259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.051918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.051918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.82.041903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060741105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.82.041903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060741105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.158101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.158101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.1222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.1222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1071111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062446481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/130943261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062871463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139998344921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062875616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/13-aap950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cms.2006.v4.n1.a4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072458747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.1999.81.4.1531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074357144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.1997.77.4.1697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083075769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.96.052308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092583023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.96.052308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092583023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-017-0668-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092690015", 
              "https://doi.org/10.1007/s10827-017-0668-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-017-0668-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092690015", 
              "https://doi.org/10.1007/s10827-017-0668-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511622762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098682460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1111345457", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-16", 
        "datePublishedReg": "2019-02-16", 
        "description": "Homogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks. The population dynamics models derived here successfully capture the so-called multiple-firing events (MFEs), which emerge naturally in fluctuation-driven networks of strongly coupled neurons. Although these MFEs likely play a crucial role in the generation of the neuronal avalanches observed in vitro and in vivo, the mechanisms underlying these MFEs cannot easily be understood using standard population dynamic models. Using our PEA formalism, we systematically generate a sequence of model reductions, going from Master equations, to Fokker-Planck equations, and finally, to an augmented system of ordinary differential equations. Furthermore, we show that these reductions can faithfully describe the heterogeneous dynamic regimes underlying the generation of MFEs in strongly coupled conductance-based integrate-and-fire neuronal networks.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10827-019-00712-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6978590", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1112739", 
            "issn": [
              "0929-5313", 
              "1573-6873"
            ], 
            "name": "Journal of Computational Neuroscience", 
            "type": "Periodical"
          }
        ], 
        "name": "A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs", 
        "pagination": "1-22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c1934d6bf35bca03aa277eb035f1fc85a9cd863dbc7a976b235ea7dd32baa5f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30788694"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9439510"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10827-019-00712-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112260184"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10827-019-00712-w", 
          "https://app.dimensions.ai/details/publication/pub.1112260184"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10827-019-00712-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10827-019-00712-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10827-019-00712-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10827-019-00712-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10827-019-00712-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    333 TRIPLES      21 PREDICATES      101 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10827-019-00712-w schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N42c52849999f403c85224ccad4505bb9
    4 schema:citation sg:pub.10.1007/bf00158335
    5 sg:pub.10.1007/s10827-009-0204-0
    6 sg:pub.10.1007/s10827-012-0429-1
    7 sg:pub.10.1007/s10827-013-0445-9
    8 sg:pub.10.1007/s10827-013-0472-6
    9 sg:pub.10.1007/s10827-013-0488-y
    10 sg:pub.10.1007/s10827-014-0543-3
    11 sg:pub.10.1007/s10827-017-0668-2
    12 sg:pub.10.1007/s10955-016-1622-9
    13 sg:pub.10.1023/a:1008912914816
    14 sg:pub.10.1023/a:1008925309027
    15 sg:pub.10.1023/a:1020158106603
    16 sg:pub.10.1038/75797
    17 sg:pub.10.1038/nature02078
    18 sg:pub.10.1038/nn.2501
    19 sg:pub.10.1038/nn.3220
    20 sg:pub.10.1038/nrn1198
    21 sg:pub.10.1038/nrn3747
    22 sg:pub.10.1186/s13408-014-0016-z
    23 https://app.dimensions.ai/details/publication/pub.1111345457
    24 https://doi.org/10.1016/j.biosystems.2006.12.001
    25 https://doi.org/10.1016/j.neuron.2009.09.020
    26 https://doi.org/10.1016/j.neuron.2010.11.027
    27 https://doi.org/10.1016/s0896-6273(00)00135-5
    28 https://doi.org/10.1016/s0896-6273(00)80821-1
    29 https://doi.org/10.1017/cbo9780511622762
    30 https://doi.org/10.1073/pnas.0401906101
    31 https://doi.org/10.1073/pnas.0904089106
    32 https://doi.org/10.1073/pnas.95.26.15706
    33 https://doi.org/10.1085/jgp.59.6.734
    34 https://doi.org/10.1085/jgp.59.6.767
    35 https://doi.org/10.1088/0954-898x_11_4_301
    36 https://doi.org/10.1103/physreve.48.1483
    37 https://doi.org/10.1103/physreve.48.2259
    38 https://doi.org/10.1103/physreve.67.066118
    39 https://doi.org/10.1103/physreve.69.051918
    40 https://doi.org/10.1103/physreve.76.031118
    41 https://doi.org/10.1103/physreve.82.041903
    42 https://doi.org/10.1103/physreve.96.052308
    43 https://doi.org/10.1103/physrevlett.102.158101
    44 https://doi.org/10.1103/physrevlett.59.381
    45 https://doi.org/10.1103/physrevlett.75.1222
    46 https://doi.org/10.1103/physrevlett.96.178101
    47 https://doi.org/10.1126/science.1071111
    48 https://doi.org/10.1126/science.1099745
    49 https://doi.org/10.1137/130943261
    50 https://doi.org/10.1137/s0036139998344921
    51 https://doi.org/10.1146/annurev-neuro-062111-150444
    52 https://doi.org/10.1146/annurev.neuro.051508.135603
    53 https://doi.org/10.1152/jn.00953.2009
    54 https://doi.org/10.1152/jn.01070.2005
    55 https://doi.org/10.1152/jn.1997.77.4.1697
    56 https://doi.org/10.1152/jn.1999.81.4.1531
    57 https://doi.org/10.1162/089976602320264015
    58 https://doi.org/10.1162/089976699300016179
    59 https://doi.org/10.1162/neco.2008.02-07-474
    60 https://doi.org/10.1162/neco.2009.02-08-710
    61 https://doi.org/10.1162/neco.2009.02-09-960
    62 https://doi.org/10.1214/13-aap950
    63 https://doi.org/10.1371/journal.pcbi.1000929
    64 https://doi.org/10.1371/journal.pcbi.1001056
    65 https://doi.org/10.1371/journal.pcbi.1002176
    66 https://doi.org/10.1371/journal.pone.0000439
    67 https://doi.org/10.1523/jneurosci.1677-11.2011
    68 https://doi.org/10.1523/jneurosci.3127-11.2011
    69 https://doi.org/10.1523/jneurosci.3508-05.2005
    70 https://doi.org/10.1523/jneurosci.3737-05d.2006
    71 https://doi.org/10.1523/jneurosci.4637-10.2011
    72 https://doi.org/10.1523/jneurosci.5106-04.2005
    73 https://doi.org/10.1523/jneurosci.5990-11.2012
    74 https://doi.org/10.3389/fncom.2011.00025
    75 https://doi.org/10.3389/fncom.2011.00028
    76 https://doi.org/10.3389/neuro.01.034.2008
    77 https://doi.org/10.3791/2949
    78 https://doi.org/10.4310/cms.2006.v4.n1.a4
    79 schema:datePublished 2019-02-16
    80 schema:datePublishedReg 2019-02-16
    81 schema:description Homogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks. The population dynamics models derived here successfully capture the so-called multiple-firing events (MFEs), which emerge naturally in fluctuation-driven networks of strongly coupled neurons. Although these MFEs likely play a crucial role in the generation of the neuronal avalanches observed in vitro and in vivo, the mechanisms underlying these MFEs cannot easily be understood using standard population dynamic models. Using our PEA formalism, we systematically generate a sequence of model reductions, going from Master equations, to Fokker-Planck equations, and finally, to an augmented system of ordinary differential equations. Furthermore, we show that these reductions can faithfully describe the heterogeneous dynamic regimes underlying the generation of MFEs in strongly coupled conductance-based integrate-and-fire neuronal networks.
    82 schema:genre research_article
    83 schema:inLanguage en
    84 schema:isAccessibleForFree false
    85 schema:isPartOf sg:journal.1112739
    86 schema:name A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs
    87 schema:pagination 1-22
    88 schema:productId N4d05ab6b12704bb5a936b95575ca5fdd
    89 N8edca97023204859a3fc6806de12bde8
    90 N9cd7394a89e141a6aa5e936894046226
    91 Nc8ba90aba45d42959d4bdb545ec2d8e5
    92 Nec246171e6514b09bc2ee49a3b3f258c
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112260184
    94 https://doi.org/10.1007/s10827-019-00712-w
    95 schema:sdDatePublished 2019-04-11T09:33
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N85eeef567bd1476096cbc283eb111aee
    98 schema:url https://link.springer.com/10.1007%2Fs10827-019-00712-w
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N03e69e85798b49d19cadbf545439024e rdf:first N4e7a48b19f804d1c932f691c8f7cf73e
    103 rdf:rest Nc998a78ba97347758fbf31225e079b96
    104 N42c52849999f403c85224ccad4505bb9 rdf:first Ndffba2faabc348d98d29e8fae6b2d56c
    105 rdf:rest N03e69e85798b49d19cadbf545439024e
    106 N4d05ab6b12704bb5a936b95575ca5fdd schema:name nlm_unique_id
    107 schema:value 9439510
    108 rdf:type schema:PropertyValue
    109 N4e7a48b19f804d1c932f691c8f7cf73e schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    110 schema:familyName Shao
    111 schema:givenName Yuxiu
    112 rdf:type schema:Person
    113 N85eeef567bd1476096cbc283eb111aee schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N8edca97023204859a3fc6806de12bde8 schema:name doi
    116 schema:value 10.1007/s10827-019-00712-w
    117 rdf:type schema:PropertyValue
    118 N8f514ddc7efb454b90c94cde9d70bc57 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    119 schema:familyName Tao
    120 schema:givenName Louis
    121 rdf:type schema:Person
    122 N9cd7394a89e141a6aa5e936894046226 schema:name pubmed_id
    123 schema:value 30788694
    124 rdf:type schema:PropertyValue
    125 Nc7a4c932f5d746749442d39d70d13d0f schema:affiliation https://www.grid.ac/institutes/grid.482020.c
    126 schema:familyName Rangan
    127 schema:givenName Aaditya V.
    128 rdf:type schema:Person
    129 Nc8ba90aba45d42959d4bdb545ec2d8e5 schema:name readcube_id
    130 schema:value 8c1934d6bf35bca03aa277eb035f1fc85a9cd863dbc7a976b235ea7dd32baa5f
    131 rdf:type schema:PropertyValue
    132 Nc998a78ba97347758fbf31225e079b96 rdf:first Nc7a4c932f5d746749442d39d70d13d0f
    133 rdf:rest Ne46d836f8ba44949b9065ff034accb8d
    134 Ndffba2faabc348d98d29e8fae6b2d56c schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
    135 schema:familyName Zhang
    136 schema:givenName Jiwei
    137 rdf:type schema:Person
    138 Ne46d836f8ba44949b9065ff034accb8d rdf:first N8f514ddc7efb454b90c94cde9d70bc57
    139 rdf:rest rdf:nil
    140 Nec246171e6514b09bc2ee49a3b3f258c schema:name dimensions_id
    141 schema:value pub.1112260184
    142 rdf:type schema:PropertyValue
    143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Mathematical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Applied Mathematics
    148 rdf:type schema:DefinedTerm
    149 sg:grant.6978590 http://pending.schema.org/fundedItem sg:pub.10.1007/s10827-019-00712-w
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1112739 schema:issn 0929-5313
    152 1573-6873
    153 schema:name Journal of Computational Neuroscience
    154 rdf:type schema:Periodical
    155 sg:pub.10.1007/bf00158335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035039058
    156 https://doi.org/10.1007/bf00158335
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10827-009-0204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030934120
    159 https://doi.org/10.1007/s10827-009-0204-0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10827-012-0429-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052682282
    162 https://doi.org/10.1007/s10827-012-0429-1
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10827-013-0445-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935169
    165 https://doi.org/10.1007/s10827-013-0445-9
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10827-013-0472-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041459113
    168 https://doi.org/10.1007/s10827-013-0472-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10827-013-0488-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037262720
    171 https://doi.org/10.1007/s10827-013-0488-y
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10827-014-0543-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382051
    174 https://doi.org/10.1007/s10827-014-0543-3
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10827-017-0668-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092690015
    177 https://doi.org/10.1007/s10827-017-0668-2
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10955-016-1622-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096256
    180 https://doi.org/10.1007/s10955-016-1622-9
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1023/a:1008912914816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049294956
    183 https://doi.org/10.1023/a:1008912914816
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1023/a:1008925309027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001166884
    186 https://doi.org/10.1023/a:1008925309027
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1023/a:1020158106603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013278536
    189 https://doi.org/10.1023/a:1020158106603
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/75797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046622105
    192 https://doi.org/10.1038/75797
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature02078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006352401
    195 https://doi.org/10.1038/nature02078
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nn.2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030340966
    198 https://doi.org/10.1038/nn.2501
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nn.3220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052719915
    201 https://doi.org/10.1038/nn.3220
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nrn1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025880009
    204 https://doi.org/10.1038/nrn1198
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrn3747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036097170
    207 https://doi.org/10.1038/nrn3747
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/s13408-014-0016-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027900895
    210 https://doi.org/10.1186/s13408-014-0016-z
    211 rdf:type schema:CreativeWork
    212 https://app.dimensions.ai/details/publication/pub.1111345457 schema:CreativeWork
    213 https://doi.org/10.1016/j.biosystems.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053702096
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.neuron.2009.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167570
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.neuron.2010.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042182713
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/s0896-6273(00)00135-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001518064
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0896-6273(00)80821-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038107317
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1017/cbo9780511622762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682460
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.0401906101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001589506
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1073/pnas.0904089106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001155288
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1073/pnas.95.26.15706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002575633
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1085/jgp.59.6.734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010158724
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1085/jgp.59.6.767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046139818
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1088/0954-898x_11_4_301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059115760
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physreve.48.1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715592
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1103/physreve.48.2259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715695
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physreve.67.066118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038135021
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physreve.69.051918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731439
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1103/physreve.76.031118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019074984
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1103/physreve.82.041903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741105
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1103/physreve.96.052308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092583023
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1103/physrevlett.102.158101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755214
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1103/physrevlett.75.1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811512
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1103/physrevlett.96.178101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029019316
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1126/science.1071111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446481
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1126/science.1099745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010299182
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1137/130943261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871463
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1137/s0036139998344921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875616
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1146/annurev-neuro-062111-150444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040574786
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1146/annurev.neuro.051508.135603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111127
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1152/jn.00953.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053474
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1152/jn.01070.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035604084
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1152/jn.1997.77.4.1697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083075769
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1152/jn.1999.81.4.1531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074357144
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1162/089976602320264015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025183857
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1162/089976699300016179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739818
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1162/neco.2008.02-07-474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029277212
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1162/neco.2009.02-08-710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044534719
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1162/neco.2009.02-09-960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014936801
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1214/13-aap950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393520
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1371/journal.pcbi.1000929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052793819
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1371/journal.pcbi.1001056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017015458
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1371/journal.pcbi.1002176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040388186
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1371/journal.pone.0000439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005384319
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1523/jneurosci.1677-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014546418
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1523/jneurosci.3127-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010108206
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1523/jneurosci.3508-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034396255
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1523/jneurosci.3737-05d.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005398705
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1523/jneurosci.4637-10.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020952985
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1523/jneurosci.5106-04.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857715
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1523/jneurosci.5990-11.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038585845
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.3389/fncom.2011.00025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053342803
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.3389/fncom.2011.00028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004322116
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.3389/neuro.01.034.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024893049
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.3791/2949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029748209
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.4310/cms.2006.v4.n1.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458747
    322 rdf:type schema:CreativeWork
    323 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    324 schema:name Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871, Beijing, China
    325 Center for Quantitative Biology, Peking University, 100871, Beijing, China
    326 rdf:type schema:Organization
    327 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
    328 schema:name Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
    329 rdf:type schema:Organization
    330 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
    331 schema:name Hubei Key Laboratory of Computational Science, Wuhan University, 430072, Wuhan, China
    332 School of Mathematics and Statistics, Wuhan University, 430072, Wuhan, China
    333 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...