Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-21

AUTHORS

Timothée Masquelier

ABSTRACT

We have built a phenomenological spiking model of the cat early visual system comprising the retina, the Lateral Geniculate Nucleus (LGN) and V1’s layer 4, and established four main results (1) When exposed to videos that reproduce with high fidelity what a cat experiences under natural conditions, adjacent Retinal Ganglion Cells (RGCs) have spike-time correlations at a short timescale (~30 ms), despite neuronal noise and possible jitter accumulation. (2) In accordance with recent experimental findings, the LGN filters out some noise. It thus increases the spike reliability and temporal precision, the sparsity, and, importantly, further decreases down to ~15 ms adjacent cells’ correlation timescale. (3) Downstream simple cells in V1’s layer 4, if equipped with Spike Timing-Dependent Plasticity (STDP), may detect these fine-scale cross-correlations, and thus connect principally to ON- and OFF-centre cells with Receptive Fields (RF) aligned in the visual space, and thereby become orientation selective, in accordance with Hubel and Wiesel (Journal of Physiology 160:106–154, 1962) classic model. Up to this point we dealt with continuous vision, and there was no absolute time reference such as a stimulus onset, yet information was encoded and decoded in the relative spike times. (4) We then simulated saccades to a static image and benchmarked relative spike time coding and time-to-first spike coding w.r.t. to saccade landing in the context of orientation representation. In both the retina and the LGN, relative spike times are more precise, less affected by pre-landing history and global contrast than absolute ones, and lead to robust contrast invariant orientation representations in V1. More... »

PAGES

425-441

References to SciGraph publications

  • 1996-06. Emergence of simple-cell receptive field properties by learning a sparse code for natural images in NATURE
  • 2000-09. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity in NATURE NEUROSCIENCE
  • 2011-01-26. How advances in neural recording affect data analysis in NATURE NEUROSCIENCE
  • 1996-03. Orientation selectivity of thalamic input to simple cells of cat visual cortex in NATURE
  • 1996-06. Speed of processing in the human visual system in NATURE
  • 2004-01-18. First spikes in ensembles of human tactile afferents code complex spatial fingertip events in NATURE NEUROSCIENCE
  • 1998. Rank Order Coding in COMPUTATIONAL NEUROSCIENCE
  • 2007-09. Temporal precision in the neural code and the timescales of natural vision in NATURE
  • 2008-02-08. Ultra-rapid categorisation in non-human primates in ANIMAL COGNITION
  • 1980-04. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position in BIOLOGICAL CYBERNETICS
  • 2008-08-01. Virtual Retina: A biological retina model and simulator, with contrast gain control in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 1993-10. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns in BIOLOGICAL CYBERNETICS
  • 2002-05-28. Parallel processing in high-level categorization of natural images in NATURE NEUROSCIENCE
  • 2006-10-12. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2002-06-10. Visual features of intermediate complexity and their use in classification in NATURE NEUROSCIENCE
  • 2004-01-19. The world from a cat’s perspective – statistics of natural videos in BIOLOGICAL CYBERNETICS
  • 1999-11-01. Hierarchical models of object recognition in cortex in NATURE NEUROSCIENCE
  • 2004-03. The role of fixational eye movements in visual perception in NATURE REVIEWS NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10827-011-0361-9

    DOI

    http://dx.doi.org/10.1007/s10827-011-0361-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046209037

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21938439


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Action Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geniculate Bodies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Orientation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photic Stimulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retina", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinal Ganglion Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccades", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Visual Pathways", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Unit for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5612.0", 
              "name": [
                "Unit for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masquelier", 
            "givenName": "Timoth\u00e9e", 
            "id": "sg:person.01271016666.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nn866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029286260", 
              "https://doi.org/10.1038/nn866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-4831-7_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043869588", 
              "https://doi.org/10.1007/978-1-4615-4831-7_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041252974", 
              "https://doi.org/10.1038/381607a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-003-0434-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048059614", 
              "https://doi.org/10.1007/s00422-003-0434-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/78829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009745377", 
              "https://doi.org/10.1038/78829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022493025", 
              "https://doi.org/10.1038/nature06105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009152511", 
              "https://doi.org/10.1038/nrn1348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10071-008-0139-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052750670", 
              "https://doi.org/10.1007/s10071-008-0139-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016103975", 
              "https://doi.org/10.1038/nn1177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-006-0003-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043960603", 
              "https://doi.org/10.1007/s10827-006-0003-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018357603", 
              "https://doi.org/10.1038/381520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/14819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035393709", 
              "https://doi.org/10.1038/14819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011114561", 
              "https://doi.org/10.1038/nn870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00199450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021729724", 
              "https://doi.org/10.1007/bf00199450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00344251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016635886", 
              "https://doi.org/10.1007/bf00344251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-008-0108-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036688865", 
              "https://doi.org/10.1007/s10827-008-0108-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011389624", 
              "https://doi.org/10.1038/nn.2731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/380249a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024318156", 
              "https://doi.org/10.1038/380249a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09-21", 
        "datePublishedReg": "2011-09-21", 
        "description": "We have built a phenomenological spiking model of the cat early visual system comprising the retina, the Lateral Geniculate Nucleus (LGN) and V1\u2019s layer 4, and established four main results (1) When exposed to videos that reproduce with high fidelity what a cat experiences under natural conditions, adjacent Retinal Ganglion Cells (RGCs) have spike-time correlations at a short timescale (~30\u00a0ms), despite neuronal noise and possible jitter accumulation. (2) In accordance with recent experimental findings, the LGN filters out some noise. It thus increases the spike reliability and temporal precision, the sparsity, and, importantly, further decreases down to ~15\u00a0ms adjacent cells\u2019 correlation timescale. (3) Downstream simple cells in V1\u2019s layer 4, if equipped with Spike Timing-Dependent Plasticity (STDP), may detect these fine-scale cross-correlations, and thus connect principally to ON- and OFF-centre cells with Receptive Fields (RF) aligned in the visual space, and thereby become orientation selective, in accordance with Hubel and Wiesel (Journal of Physiology 160:106\u2013154, 1962) classic model. Up to this point we dealt with continuous vision, and there was no absolute time reference such as a stimulus onset, yet information was encoded and decoded in the relative spike times. (4) We then simulated saccades to a static image and benchmarked relative spike time coding and time-to-first spike coding w.r.t. to saccade landing in the context of orientation representation. In both the retina and the LGN, relative spike times are more precise, less affected by pre-landing history and global contrast than absolute ones, and lead to robust contrast invariant orientation representations in V1.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10827-011-0361-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1112739", 
            "issn": [
              "0929-5313", 
              "1573-6873"
            ], 
            "name": "Journal of Computational Neuroscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "lateral geniculate nucleus", 
          "retinal ganglion cells", 
          "V1 layer 4", 
          "layer 4", 
          "spike-timing dependent plasticity", 
          "OFF-center cells", 
          "early visual system", 
          "receptive fields", 
          "relative spike times", 
          "spike reliability", 
          "ganglion cells", 
          "geniculate nucleus", 
          "timing-dependent plasticity", 
          "orientation selectivity", 
          "visual system", 
          "spike-time correlations", 
          "stimulus onset", 
          "retina", 
          "neuronal noise", 
          "spike times", 
          "cells", 
          "further decrease", 
          "temporal precision", 
          "continuous vision", 
          "simple cells", 
          "visual space", 
          "saccades", 
          "cats", 
          "Hubel", 
          "onset", 
          "V1", 
          "main results", 
          "adjacent cells", 
          "findings", 
          "time", 
          "decrease", 
          "plasticity", 
          "history", 
          "nucleus", 
          "accumulation", 
          "spikes", 
          "vision", 
          "contrast", 
          "correlation", 
          "static images", 
          "accordance", 
          "spike-time coding", 
          "recent experimental findings", 
          "model", 
          "ON", 
          "results", 
          "classic model", 
          "information", 
          "system", 
          "conditions", 
          "reference", 
          "experimental findings", 
          "point", 
          "reliability", 
          "computational model", 
          "images", 
          "coding", 
          "landing", 
          "context", 
          "high fidelity", 
          "selectivity", 
          "one", 
          "orientation representation", 
          "fidelity", 
          "video", 
          "precision", 
          "natural conditions", 
          "absolute ones", 
          "correlation timescale", 
          "jitter accumulation", 
          "field", 
          "space", 
          "noise", 
          "orientation", 
          "time reference", 
          "time coding", 
          "short timescales", 
          "representation", 
          "absolute time reference", 
          "timescales", 
          "global contrast", 
          "sparsity", 
          "cat early visual system", 
          "adjacent Retinal Ganglion Cells", 
          "possible jitter accumulation", 
          "ms adjacent cells", 
          "Downstream simple cells", 
          "Wiesel (Journal of Physiology 160:106\u2013154, 1962) classic model", 
          "relative spike time coding", 
          "pre-landing history", 
          "robust contrast invariant orientation representations", 
          "contrast invariant orientation representations", 
          "invariant orientation representations", 
          "saccadic vision"
        ], 
        "name": "Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model", 
        "pagination": "425-441", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046209037"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10827-011-0361-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21938439"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10827-011-0361-9", 
          "https://app.dimensions.ai/details/publication/pub.1046209037"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_539.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10827-011-0361-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10827-011-0361-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10827-011-0361-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10827-011-0361-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10827-011-0361-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      22 PREDICATES      159 URIs      133 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10827-011-0361-9 schema:about N045ed5615858452d95f5ee1bde1a7dac
    2 N09bc1fbefaf64b3c84ba0ca6fdbc85c5
    3 N1098672ec41c4ffcb63e60e4e2a4371e
    4 N17aa48c3c3ae43f49a565af76f15bdd4
    5 N20c09458fc6346919a056b4dbb5ec769
    6 N3135116bac644c8290da0a02252554e8
    7 N38dce3d5154845519ce099c46e9c2e78
    8 N3916e45b231d4928ae6c426ca13f23b2
    9 N53b3da7419bc4d02bcc38302a5c98954
    10 N8c23a70496094bad801e7f99a544eaf8
    11 N8dc93cff72fb478d91041aa9b57ec897
    12 Na9344e9b44e6487d874ce26f409ac9fb
    13 Nad0e7c10651c439ead885cb8ee756065
    14 Nd0a6dbc804564cf593ced440728bfbef
    15 Nd7beddb22b934e46ae4e4021ff4a1eba
    16 Nfefc5cbd262446d4953ac166ad3fc500
    17 anzsrc-for:11
    18 anzsrc-for:1109
    19 schema:author Ne83b7b25886f4a7faca28d6147746697
    20 schema:citation sg:pub.10.1007/978-1-4615-4831-7_19
    21 sg:pub.10.1007/bf00199450
    22 sg:pub.10.1007/bf00344251
    23 sg:pub.10.1007/s00422-003-0434-6
    24 sg:pub.10.1007/s10071-008-0139-2
    25 sg:pub.10.1007/s10827-006-0003-9
    26 sg:pub.10.1007/s10827-008-0108-4
    27 sg:pub.10.1038/14819
    28 sg:pub.10.1038/380249a0
    29 sg:pub.10.1038/381520a0
    30 sg:pub.10.1038/381607a0
    31 sg:pub.10.1038/78829
    32 sg:pub.10.1038/nature06105
    33 sg:pub.10.1038/nn.2731
    34 sg:pub.10.1038/nn1177
    35 sg:pub.10.1038/nn866
    36 sg:pub.10.1038/nn870
    37 sg:pub.10.1038/nrn1348
    38 schema:datePublished 2011-09-21
    39 schema:datePublishedReg 2011-09-21
    40 schema:description We have built a phenomenological spiking model of the cat early visual system comprising the retina, the Lateral Geniculate Nucleus (LGN) and V1’s layer 4, and established four main results (1) When exposed to videos that reproduce with high fidelity what a cat experiences under natural conditions, adjacent Retinal Ganglion Cells (RGCs) have spike-time correlations at a short timescale (~30 ms), despite neuronal noise and possible jitter accumulation. (2) In accordance with recent experimental findings, the LGN filters out some noise. It thus increases the spike reliability and temporal precision, the sparsity, and, importantly, further decreases down to ~15 ms adjacent cells’ correlation timescale. (3) Downstream simple cells in V1’s layer 4, if equipped with Spike Timing-Dependent Plasticity (STDP), may detect these fine-scale cross-correlations, and thus connect principally to ON- and OFF-centre cells with Receptive Fields (RF) aligned in the visual space, and thereby become orientation selective, in accordance with Hubel and Wiesel (Journal of Physiology 160:106–154, 1962) classic model. Up to this point we dealt with continuous vision, and there was no absolute time reference such as a stimulus onset, yet information was encoded and decoded in the relative spike times. (4) We then simulated saccades to a static image and benchmarked relative spike time coding and time-to-first spike coding w.r.t. to saccade landing in the context of orientation representation. In both the retina and the LGN, relative spike times are more precise, less affected by pre-landing history and global contrast than absolute ones, and lead to robust contrast invariant orientation representations in V1.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N237f6276351c472a864644113316fa36
    45 N9e00144395c04a4f8f611e6804de3f11
    46 sg:journal.1112739
    47 schema:keywords Downstream simple cells
    48 Hubel
    49 OFF-center cells
    50 ON
    51 V1
    52 V1 layer 4
    53 Wiesel (Journal of Physiology 160:106–154, 1962) classic model
    54 absolute ones
    55 absolute time reference
    56 accordance
    57 accumulation
    58 adjacent Retinal Ganglion Cells
    59 adjacent cells
    60 cat early visual system
    61 cats
    62 cells
    63 classic model
    64 coding
    65 computational model
    66 conditions
    67 context
    68 continuous vision
    69 contrast
    70 contrast invariant orientation representations
    71 correlation
    72 correlation timescale
    73 decrease
    74 early visual system
    75 experimental findings
    76 fidelity
    77 field
    78 findings
    79 further decrease
    80 ganglion cells
    81 geniculate nucleus
    82 global contrast
    83 high fidelity
    84 history
    85 images
    86 information
    87 invariant orientation representations
    88 jitter accumulation
    89 landing
    90 lateral geniculate nucleus
    91 layer 4
    92 main results
    93 model
    94 ms adjacent cells
    95 natural conditions
    96 neuronal noise
    97 noise
    98 nucleus
    99 one
    100 onset
    101 orientation
    102 orientation representation
    103 orientation selectivity
    104 plasticity
    105 point
    106 possible jitter accumulation
    107 pre-landing history
    108 precision
    109 recent experimental findings
    110 receptive fields
    111 reference
    112 relative spike time coding
    113 relative spike times
    114 reliability
    115 representation
    116 results
    117 retina
    118 retinal ganglion cells
    119 robust contrast invariant orientation representations
    120 saccades
    121 saccadic vision
    122 selectivity
    123 short timescales
    124 simple cells
    125 space
    126 sparsity
    127 spike reliability
    128 spike times
    129 spike-time coding
    130 spike-time correlations
    131 spike-timing dependent plasticity
    132 spikes
    133 static images
    134 stimulus onset
    135 system
    136 temporal precision
    137 time
    138 time coding
    139 time reference
    140 timescales
    141 timing-dependent plasticity
    142 video
    143 vision
    144 visual space
    145 visual system
    146 schema:name Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model
    147 schema:pagination 425-441
    148 schema:productId N6c92646cf26d4549bc3c43de9beb8305
    149 N8c7ad2013d364c99a5fff46c333bd669
    150 Nb418365183124cd78ccd47e87db3e792
    151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046209037
    152 https://doi.org/10.1007/s10827-011-0361-9
    153 schema:sdDatePublished 2022-01-01T18:25
    154 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    155 schema:sdPublisher Naa3b6b0b1a244dc9827ecabd26836486
    156 schema:url https://doi.org/10.1007/s10827-011-0361-9
    157 sgo:license sg:explorer/license/
    158 sgo:sdDataset articles
    159 rdf:type schema:ScholarlyArticle
    160 N045ed5615858452d95f5ee1bde1a7dac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Neurons
    162 rdf:type schema:DefinedTerm
    163 N09bc1fbefaf64b3c84ba0ca6fdbc85c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Retinal Ganglion Cells
    165 rdf:type schema:DefinedTerm
    166 N1098672ec41c4ffcb63e60e4e2a4371e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Action Potentials
    168 rdf:type schema:DefinedTerm
    169 N17aa48c3c3ae43f49a565af76f15bdd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Humans
    171 rdf:type schema:DefinedTerm
    172 N20c09458fc6346919a056b4dbb5ec769 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Nerve Net
    174 rdf:type schema:DefinedTerm
    175 N237f6276351c472a864644113316fa36 schema:issueNumber 3
    176 rdf:type schema:PublicationIssue
    177 N3135116bac644c8290da0a02252554e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Models, Neurological
    179 rdf:type schema:DefinedTerm
    180 N38dce3d5154845519ce099c46e9c2e78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Time Factors
    182 rdf:type schema:DefinedTerm
    183 N3916e45b231d4928ae6c426ca13f23b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Synapses
    185 rdf:type schema:DefinedTerm
    186 N53b3da7419bc4d02bcc38302a5c98954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Saccades
    188 rdf:type schema:DefinedTerm
    189 N6c92646cf26d4549bc3c43de9beb8305 schema:name doi
    190 schema:value 10.1007/s10827-011-0361-9
    191 rdf:type schema:PropertyValue
    192 N8c23a70496094bad801e7f99a544eaf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Orientation
    194 rdf:type schema:DefinedTerm
    195 N8c7ad2013d364c99a5fff46c333bd669 schema:name pubmed_id
    196 schema:value 21938439
    197 rdf:type schema:PropertyValue
    198 N8dc93cff72fb478d91041aa9b57ec897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Visual Pathways
    200 rdf:type schema:DefinedTerm
    201 N9e00144395c04a4f8f611e6804de3f11 schema:volumeNumber 32
    202 rdf:type schema:PublicationVolume
    203 Na9344e9b44e6487d874ce26f409ac9fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Computer Simulation
    205 rdf:type schema:DefinedTerm
    206 Naa3b6b0b1a244dc9827ecabd26836486 schema:name Springer Nature - SN SciGraph project
    207 rdf:type schema:Organization
    208 Nad0e7c10651c439ead885cb8ee756065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Animals
    210 rdf:type schema:DefinedTerm
    211 Nb418365183124cd78ccd47e87db3e792 schema:name dimensions_id
    212 schema:value pub.1046209037
    213 rdf:type schema:PropertyValue
    214 Nd0a6dbc804564cf593ced440728bfbef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Geniculate Bodies
    216 rdf:type schema:DefinedTerm
    217 Nd7beddb22b934e46ae4e4021ff4a1eba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Retina
    219 rdf:type schema:DefinedTerm
    220 Ne83b7b25886f4a7faca28d6147746697 rdf:first sg:person.01271016666.11
    221 rdf:rest rdf:nil
    222 Nfefc5cbd262446d4953ac166ad3fc500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Photic Stimulation
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Medical and Health Sciences
    227 rdf:type schema:DefinedTerm
    228 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    229 schema:name Neurosciences
    230 rdf:type schema:DefinedTerm
    231 sg:journal.1112739 schema:issn 0929-5313
    232 1573-6873
    233 schema:name Journal of Computational Neuroscience
    234 schema:publisher Springer Nature
    235 rdf:type schema:Periodical
    236 sg:person.01271016666.11 schema:affiliation grid-institutes:grid.5612.0
    237 schema:familyName Masquelier
    238 schema:givenName Timothée
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11
    240 rdf:type schema:Person
    241 sg:pub.10.1007/978-1-4615-4831-7_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043869588
    242 https://doi.org/10.1007/978-1-4615-4831-7_19
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/bf00199450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729724
    245 https://doi.org/10.1007/bf00199450
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/bf00344251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016635886
    248 https://doi.org/10.1007/bf00344251
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00422-003-0434-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048059614
    251 https://doi.org/10.1007/s00422-003-0434-6
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10071-008-0139-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052750670
    254 https://doi.org/10.1007/s10071-008-0139-2
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s10827-006-0003-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043960603
    257 https://doi.org/10.1007/s10827-006-0003-9
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s10827-008-0108-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036688865
    260 https://doi.org/10.1007/s10827-008-0108-4
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/14819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035393709
    263 https://doi.org/10.1038/14819
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/380249a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024318156
    266 https://doi.org/10.1038/380249a0
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/381520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018357603
    269 https://doi.org/10.1038/381520a0
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/381607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041252974
    272 https://doi.org/10.1038/381607a0
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/78829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009745377
    275 https://doi.org/10.1038/78829
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature06105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022493025
    278 https://doi.org/10.1038/nature06105
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nn.2731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011389624
    281 https://doi.org/10.1038/nn.2731
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nn1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016103975
    284 https://doi.org/10.1038/nn1177
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nn866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029286260
    287 https://doi.org/10.1038/nn866
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nn870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011114561
    290 https://doi.org/10.1038/nn870
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nrn1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009152511
    293 https://doi.org/10.1038/nrn1348
    294 rdf:type schema:CreativeWork
    295 grid-institutes:grid.5612.0 schema:alternateName Unit for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    296 schema:name Unit for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...