A computational approach for investigating Coulomb interaction using Wigner–Poisson coupling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-21

AUTHORS

Majid Benam, Mauro Ballicchia, Josef Weinbub, Siegfried Selberherr, Mihail Nedjalkov

ABSTRACT

Entangled quantum particles, in which operating on one particle instantaneously influences the state of the entangled particle, are attractive options for carrying quantum information at the nanoscale. However, fully-describing entanglement in traditional time-dependent quantum transport simulation approaches requires significant computational effort, bordering on being prohibitive. Considering electrons, one approach to analyzing their entanglement is through modeling the Coulomb interaction via the Wigner formalism. In this work, we reduce the computational complexity of the time evolution of two interacting electrons by resorting to reasonable approximations. In particular, we replace the Wigner potential of the electron–electron interaction by a local electrostatic field, which is introduced through the spectral decomposition of the potential. It is demonstrated that for some particular configurations of an electron–electron system, the introduced approximations are feasible. Purity, identified as the maximal coherence for a quantum state, is also analyzed and its corresponding analysis demonstrates that the entanglement due to the Coulomb interaction is well accounted for by the introduced local approximation. More... »

PAGES

775-784

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10825-020-01643-x

DOI

http://dx.doi.org/10.1007/s10825-020-01643-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134760931

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34720780


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benam", 
        "givenName": "Majid", 
        "id": "sg:person.016603343713.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603343713.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballicchia", 
        "givenName": "Mauro", 
        "id": "sg:person.013575440053.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013575440053.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinbub", 
        "givenName": "Josef", 
        "id": "sg:person.011312454563.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10825-005-7109-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033973558", 
          "https://doi.org/10.1007/s10825-005-7109-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-10692-8_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111517495", 
          "https://doi.org/10.1007/978-3-030-10692-8_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10825-004-7086-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046800551", 
          "https://doi.org/10.1007/s10825-004-7086-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jcel.0000011440.86454.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007807916", 
          "https://doi.org/10.1023/b:jcel.0000011440.86454.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10825-015-0720-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031881115", 
          "https://doi.org/10.1007/s10825-015-0720-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-21", 
    "datePublishedReg": "2021-01-21", 
    "description": "Entangled quantum particles, in which operating on one particle instantaneously influences the state of the entangled particle, are attractive options for carrying quantum information at the nanoscale. However, fully-describing entanglement in traditional time-dependent quantum transport simulation approaches requires significant computational effort, bordering on being prohibitive. Considering electrons, one approach to analyzing their entanglement is through modeling the Coulomb interaction via the Wigner formalism. In this work, we reduce the computational complexity of the time evolution of two interacting electrons by resorting to reasonable approximations. In particular, we replace the Wigner potential of the electron\u2013electron interaction by a local electrostatic field, which is introduced through the spectral decomposition of the potential. It is demonstrated that for some particular configurations of an electron\u2013electron system, the introduced approximations are feasible. Purity, identified as the maximal coherence for a quantum state, is also analyzed and its corresponding analysis demonstrates that the entanglement due to the Coulomb interaction is well accounted for by the introduced local approximation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10825-020-01643-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8966946", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7579196", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036340", 
        "issn": [
          "1569-8025", 
          "1572-8137"
        ], 
        "name": "Journal of Computational Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "Coulomb interaction", 
      "electron-electron systems", 
      "electron-electron interaction", 
      "local electrostatic field", 
      "quantum information", 
      "quantum states", 
      "entangled particles", 
      "Wigner formalism", 
      "Wigner potential", 
      "maximal coherence", 
      "electrostatic field", 
      "time evolution", 
      "entanglement", 
      "electrons", 
      "local approximation", 
      "approximation", 
      "quantum", 
      "particles", 
      "reasonable approximation", 
      "nanoscale", 
      "formalism", 
      "coherence", 
      "coupling", 
      "state", 
      "interaction", 
      "particular configuration", 
      "spectral decomposition", 
      "field", 
      "significant computational effort", 
      "configuration", 
      "corresponding analysis", 
      "computational approach", 
      "simulation approach", 
      "potential", 
      "computational effort", 
      "evolution", 
      "computational complexity", 
      "purity", 
      "work", 
      "system", 
      "attractive option", 
      "decomposition", 
      "approach", 
      "information", 
      "complexity", 
      "analysis", 
      "efforts", 
      "options"
    ], 
    "name": "A computational approach for investigating Coulomb interaction using Wigner\u2013Poisson coupling", 
    "pagination": "775-784", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134760931"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10825-020-01643-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34720780"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10825-020-01643-x", 
      "https://app.dimensions.ai/details/publication/pub.1134760931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_898.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10825-020-01643-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-020-01643-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-020-01643-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-020-01643-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-020-01643-x'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      79 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10825-020-01643-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nf8c1078301d442bb9c40ec113e3f02d4
4 schema:citation sg:pub.10.1007/978-3-030-10692-8_29
5 sg:pub.10.1007/s10825-004-7086-1
6 sg:pub.10.1007/s10825-005-7109-6
7 sg:pub.10.1007/s10825-015-0720-2
8 sg:pub.10.1023/b:jcel.0000011440.86454.13
9 schema:datePublished 2021-01-21
10 schema:datePublishedReg 2021-01-21
11 schema:description Entangled quantum particles, in which operating on one particle instantaneously influences the state of the entangled particle, are attractive options for carrying quantum information at the nanoscale. However, fully-describing entanglement in traditional time-dependent quantum transport simulation approaches requires significant computational effort, bordering on being prohibitive. Considering electrons, one approach to analyzing their entanglement is through modeling the Coulomb interaction via the Wigner formalism. In this work, we reduce the computational complexity of the time evolution of two interacting electrons by resorting to reasonable approximations. In particular, we replace the Wigner potential of the electron–electron interaction by a local electrostatic field, which is introduced through the spectral decomposition of the potential. It is demonstrated that for some particular configurations of an electron–electron system, the introduced approximations are feasible. Purity, identified as the maximal coherence for a quantum state, is also analyzed and its corresponding analysis demonstrates that the entanglement due to the Coulomb interaction is well accounted for by the introduced local approximation.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Nbbb68a632e984382837adc67404e2845
16 Nc10c9e8676c442deb2c125d36b3401e6
17 sg:journal.1036340
18 schema:keywords Coulomb interaction
19 Wigner formalism
20 Wigner potential
21 analysis
22 approach
23 approximation
24 attractive option
25 coherence
26 complexity
27 computational approach
28 computational complexity
29 computational effort
30 configuration
31 corresponding analysis
32 coupling
33 decomposition
34 efforts
35 electron-electron interaction
36 electron-electron systems
37 electrons
38 electrostatic field
39 entangled particles
40 entanglement
41 evolution
42 field
43 formalism
44 information
45 interaction
46 local approximation
47 local electrostatic field
48 maximal coherence
49 nanoscale
50 options
51 particles
52 particular configuration
53 potential
54 purity
55 quantum
56 quantum information
57 quantum states
58 reasonable approximation
59 significant computational effort
60 simulation approach
61 spectral decomposition
62 state
63 system
64 time evolution
65 work
66 schema:name A computational approach for investigating Coulomb interaction using Wigner–Poisson coupling
67 schema:pagination 775-784
68 schema:productId N4f7e23805c234c19a310a3864e0d3531
69 N7d3507846c1d44a5b4e4b602880494d2
70 Na34fcedf30294347a8707ba016ec2c8f
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134760931
72 https://doi.org/10.1007/s10825-020-01643-x
73 schema:sdDatePublished 2022-05-10T10:30
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N98bc59dd4d6243e2aa7ac46766e28803
76 schema:url https://doi.org/10.1007/s10825-020-01643-x
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N45a7a290c1984a55b13e530ef6b94d9a rdf:first sg:person.013033344117.92
81 rdf:rest N64eba65513c94e0db90c6a6f85a4a806
82 N4f7e23805c234c19a310a3864e0d3531 schema:name dimensions_id
83 schema:value pub.1134760931
84 rdf:type schema:PropertyValue
85 N5182060d25044e1496b8827abadcf8ce rdf:first sg:person.013575440053.21
86 rdf:rest Ndc3a6b0423ed490f9a2407dae4be9ffc
87 N64eba65513c94e0db90c6a6f85a4a806 rdf:first sg:person.011142023427.48
88 rdf:rest rdf:nil
89 N7d3507846c1d44a5b4e4b602880494d2 schema:name pubmed_id
90 schema:value 34720780
91 rdf:type schema:PropertyValue
92 N98bc59dd4d6243e2aa7ac46766e28803 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Na34fcedf30294347a8707ba016ec2c8f schema:name doi
95 schema:value 10.1007/s10825-020-01643-x
96 rdf:type schema:PropertyValue
97 Nbbb68a632e984382837adc67404e2845 schema:volumeNumber 20
98 rdf:type schema:PublicationVolume
99 Nc10c9e8676c442deb2c125d36b3401e6 schema:issueNumber 2
100 rdf:type schema:PublicationIssue
101 Ndc3a6b0423ed490f9a2407dae4be9ffc rdf:first sg:person.011312454563.88
102 rdf:rest N45a7a290c1984a55b13e530ef6b94d9a
103 Nf8c1078301d442bb9c40ec113e3f02d4 rdf:first sg:person.016603343713.03
104 rdf:rest N5182060d25044e1496b8827abadcf8ce
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
109 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
110 rdf:type schema:DefinedTerm
111 sg:grant.7579196 http://pending.schema.org/fundedItem sg:pub.10.1007/s10825-020-01643-x
112 rdf:type schema:MonetaryGrant
113 sg:grant.8966946 http://pending.schema.org/fundedItem sg:pub.10.1007/s10825-020-01643-x
114 rdf:type schema:MonetaryGrant
115 sg:journal.1036340 schema:issn 1569-8025
116 1572-8137
117 schema:name Journal of Computational Electronics
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
121 schema:familyName Nedjalkov
122 schema:givenName Mihail
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
124 rdf:type schema:Person
125 sg:person.011312454563.88 schema:affiliation grid-institutes:grid.5329.d
126 schema:familyName Weinbub
127 schema:givenName Josef
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88
129 rdf:type schema:Person
130 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
131 schema:familyName Selberherr
132 schema:givenName Siegfried
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
134 rdf:type schema:Person
135 sg:person.013575440053.21 schema:affiliation grid-institutes:grid.5329.d
136 schema:familyName Ballicchia
137 schema:givenName Mauro
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013575440053.21
139 rdf:type schema:Person
140 sg:person.016603343713.03 schema:affiliation grid-institutes:grid.5329.d
141 schema:familyName Benam
142 schema:givenName Majid
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603343713.03
144 rdf:type schema:Person
145 sg:pub.10.1007/978-3-030-10692-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111517495
146 https://doi.org/10.1007/978-3-030-10692-8_29
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10825-004-7086-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046800551
149 https://doi.org/10.1007/s10825-004-7086-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10825-005-7109-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033973558
152 https://doi.org/10.1007/s10825-005-7109-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10825-015-0720-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031881115
155 https://doi.org/10.1007/s10825-015-0720-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/b:jcel.0000011440.86454.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007807916
158 https://doi.org/10.1023/b:jcel.0000011440.86454.13
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.5329.d schema:alternateName Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics, TU Wien, Vienna, Austria
161 Institute for Microelectronics, TU Wien, Vienna, Austria
162 schema:name Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics, TU Wien, Vienna, Austria
163 Institute for Microelectronics, TU Wien, Vienna, Austria
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...