Structural, electrical and optical properties of InGaZnO4 and In29Sn3O48: a first-principles study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-24

AUTHORS

Xiaolong Zhou, Hanxing Cao, Zhaobo Zhou, Jianchun Cao, Jie Yu

ABSTRACT

First-principles calculations were performed to investigate the electrical and optical properties of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} with Sn-doped In2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{2}\hbox {O}_{3}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} (IGZO). The band structure, density of states, optical properties including dielectric function, loss function, reflectivity and absorption coefficient are calculated. The calculated total energy shows that the most stable crystal structures are type III for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and type II for InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document}. The band structure indicates the both In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} are direct gap semiconductors. The intrinsic band gap of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} is much narrower than that of InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document}, and results in a better electrical conductivity for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document}. The density of states shows the main hybridization occurring between In-4d and O-2p states for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} while between In-4d In-5p, Zn-4s and O-2p states for InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} near the valence band maximum. The reflectivity index R(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R({\omega })$$\end{document} shows that the peak value of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} appears only in the ultraviolet range, indicating that these two materials have all excellent transparency. In addition, the absorption coefficient α(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }({\omega })$$\end{document} of both In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} is high in the ultraviolet frequency range, and therefore they show, a high UV absorption rate. More... »

PAGES

280-286

References to SciGraph publications

  • 2000-08. Transparent Conducting Oxides in MRS BULLETIN
  • 2015-11-19. Optical properties of g-C4N3/BN bilayer film: A first-principles study in JOURNAL OF THE KOREAN PHYSICAL SOCIETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10825-017-0977-8

    DOI

    http://dx.doi.org/10.1007/s10825-017-0977-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084027086


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China", 
              "id": "http://www.grid.ac/institutes/grid.218292.2", 
              "name": [
                "Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, 650093, Kunming, China", 
                "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Xiaolong", 
            "id": "sg:person.07577164716.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07577164716.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China", 
              "id": "http://www.grid.ac/institutes/grid.218292.2", 
              "name": [
                "Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, 650093, Kunming, China", 
                "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Hanxing", 
            "id": "sg:person.010633271150.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010633271150.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China", 
              "id": "http://www.grid.ac/institutes/grid.218292.2", 
              "name": [
                "Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, 650093, Kunming, China", 
                "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Zhaobo", 
            "id": "sg:person.016242356377.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242356377.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China", 
              "id": "http://www.grid.ac/institutes/grid.218292.2", 
              "name": [
                "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Jianchun", 
            "id": "sg:person.016130672433.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130672433.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China", 
              "id": "http://www.grid.ac/institutes/grid.218292.2", 
              "name": [
                "Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, 650093, Kunming, China", 
                "Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Jie", 
            "id": "sg:person.011752666433.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011752666433.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1557/mrs2000.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067967620", 
              "https://doi.org/10.1557/mrs2000.256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3938/jkps.67.1624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035434491", 
              "https://doi.org/10.3938/jkps.67.1624"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-24", 
        "datePublishedReg": "2017-03-24", 
        "description": "First-principles calculations were performed to investigate the electrical and optical properties of In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} with Sn-doped In2O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{2}\\hbox {O}_{3}$$\\end{document} and InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document} (IGZO). The band structure, density of states, optical properties including dielectric function, loss function, reflectivity and absorption coefficient are calculated. The calculated total energy shows that the most stable crystal structures are type III for In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} and type II for InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document}. The band structure indicates the both In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} and InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document} are direct gap semiconductors. The intrinsic band gap of In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} is much narrower than that of InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document}, and results in a better electrical conductivity for In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document}. The density of states shows the main hybridization occurring between In-4d and O-2p states for In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} while between In-4d In-5p, Zn-4s and O-2p states for InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document} near the valence band maximum. The reflectivity index R(\u03c9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R({\\omega })$$\\end{document} shows that the peak value of In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} and InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document} appears only in the ultraviolet range, indicating that these two materials have all excellent transparency. In addition, the absorption coefficient \u03b1(\u03c9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\alpha }({\\omega })$$\\end{document} of both In29Sn3O48\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {In}_{29}\\hbox {Sn}_{3}\\hbox {O}_{48}$$\\end{document} and InGaZnO4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {InGaZnO}_{4}$$\\end{document} is high in the ultraviolet frequency range, and therefore they show, a high UV absorption rate.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10825-017-0977-8", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8252205", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036340", 
            "issn": [
              "1569-8025", 
              "1572-8137"
            ], 
            "name": "Journal of Computational Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "O 2p states", 
          "optical properties", 
          "density of states", 
          "In 4d", 
          "band structure", 
          "absorption coefficient", 
          "ultraviolet frequency range", 
          "direct-gap semiconductors", 
          "intrinsic band gap", 
          "valence band maximum", 
          "first-principles calculations", 
          "dielectric function", 
          "first-principles study", 
          "gap semiconductor", 
          "ultraviolet range", 
          "band gap", 
          "band maximum", 
          "Zn 4s", 
          "reflectivity index", 
          "total energy", 
          "excellent transparency", 
          "frequency range", 
          "stable crystal structure", 
          "semiconductors", 
          "reflectivity", 
          "state", 
          "crystal structure", 
          "InGaZnO4", 
          "density", 
          "properties", 
          "calculations", 
          "structure", 
          "energy", 
          "electrical conductivity", 
          "range", 
          "peak value", 
          "Sn", 
          "gap", 
          "coefficient", 
          "transparency", 
          "absorption rate", 
          "maximum", 
          "loss function", 
          "conductivity", 
          "function", 
          "materials", 
          "values", 
          "results", 
          "index", 
          "hybridization", 
          "addition", 
          "rate", 
          "study", 
          "type III"
        ], 
        "name": "Structural, electrical and optical properties of InGaZnO4 and In29Sn3O48: a first-principles study", 
        "pagination": "280-286", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084027086"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10825-017-0977-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10825-017-0977-8", 
          "https://app.dimensions.ai/details/publication/pub.1084027086"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_750.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10825-017-0977-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-017-0977-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-017-0977-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-017-0977-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-017-0977-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      80 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10825-017-0977-8 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfb8e25f284614da2b7df319daf7a27eb
    4 schema:citation sg:pub.10.1557/mrs2000.256
    5 sg:pub.10.3938/jkps.67.1624
    6 schema:datePublished 2017-03-24
    7 schema:datePublishedReg 2017-03-24
    8 schema:description First-principles calculations were performed to investigate the electrical and optical properties of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} with Sn-doped In2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{2}\hbox {O}_{3}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} (IGZO). The band structure, density of states, optical properties including dielectric function, loss function, reflectivity and absorption coefficient are calculated. The calculated total energy shows that the most stable crystal structures are type III for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and type II for InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document}. The band structure indicates the both In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} are direct gap semiconductors. The intrinsic band gap of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} is much narrower than that of InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document}, and results in a better electrical conductivity for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document}. The density of states shows the main hybridization occurring between In-4d and O-2p states for In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} while between In-4d In-5p, Zn-4s and O-2p states for InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} near the valence band maximum. The reflectivity index R(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R({\omega })$$\end{document} shows that the peak value of In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} appears only in the ultraviolet range, indicating that these two materials have all excellent transparency. In addition, the absorption coefficient α(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }({\omega })$$\end{document} of both In29Sn3O48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{29}\hbox {Sn}_{3}\hbox {O}_{48}$$\end{document} and InGaZnO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {InGaZnO}_{4}$$\end{document} is high in the ultraviolet frequency range, and therefore they show, a high UV absorption rate.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N151702e0c0de4bf19cd55426b59908a9
    12 N4e65d98efae74756822056a5dcf60283
    13 sg:journal.1036340
    14 schema:keywords In 4d
    15 InGaZnO4
    16 O 2p states
    17 Sn
    18 Zn 4s
    19 absorption coefficient
    20 absorption rate
    21 addition
    22 band gap
    23 band maximum
    24 band structure
    25 calculations
    26 coefficient
    27 conductivity
    28 crystal structure
    29 density
    30 density of states
    31 dielectric function
    32 direct-gap semiconductors
    33 electrical conductivity
    34 energy
    35 excellent transparency
    36 first-principles calculations
    37 first-principles study
    38 frequency range
    39 function
    40 gap
    41 gap semiconductor
    42 hybridization
    43 index
    44 intrinsic band gap
    45 loss function
    46 materials
    47 maximum
    48 optical properties
    49 peak value
    50 properties
    51 range
    52 rate
    53 reflectivity
    54 reflectivity index
    55 results
    56 semiconductors
    57 stable crystal structure
    58 state
    59 structure
    60 study
    61 total energy
    62 transparency
    63 type III
    64 ultraviolet frequency range
    65 ultraviolet range
    66 valence band maximum
    67 values
    68 schema:name Structural, electrical and optical properties of InGaZnO4 and In29Sn3O48: a first-principles study
    69 schema:pagination 280-286
    70 schema:productId N2341b68c66d546bf9a38fa2350cf96ab
    71 Nb8aa6bd3a18c4574af91a08b1a433cf5
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027086
    73 https://doi.org/10.1007/s10825-017-0977-8
    74 schema:sdDatePublished 2022-11-24T21:03
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N8e49672663e24d018042999f9f77d198
    77 schema:url https://doi.org/10.1007/s10825-017-0977-8
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N151702e0c0de4bf19cd55426b59908a9 schema:volumeNumber 16
    82 rdf:type schema:PublicationVolume
    83 N2341b68c66d546bf9a38fa2350cf96ab schema:name dimensions_id
    84 schema:value pub.1084027086
    85 rdf:type schema:PropertyValue
    86 N2841f893e4a04fef83ec6d4f22a3e9c4 rdf:first sg:person.016130672433.83
    87 rdf:rest Necb821fac0a64929939b6d74c4a4c926
    88 N4e65d98efae74756822056a5dcf60283 schema:issueNumber 2
    89 rdf:type schema:PublicationIssue
    90 N8e49672663e24d018042999f9f77d198 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Na1aea3a729104c82a1a779d276772799 rdf:first sg:person.016242356377.16
    93 rdf:rest N2841f893e4a04fef83ec6d4f22a3e9c4
    94 Na3eb5b07323e4d65be5699e04b2f5ad6 rdf:first sg:person.010633271150.02
    95 rdf:rest Na1aea3a729104c82a1a779d276772799
    96 Nb8aa6bd3a18c4574af91a08b1a433cf5 schema:name doi
    97 schema:value 10.1007/s10825-017-0977-8
    98 rdf:type schema:PropertyValue
    99 Necb821fac0a64929939b6d74c4a4c926 rdf:first sg:person.011752666433.50
    100 rdf:rest rdf:nil
    101 Nfb8e25f284614da2b7df319daf7a27eb rdf:first sg:person.07577164716.91
    102 rdf:rest Na3eb5b07323e4d65be5699e04b2f5ad6
    103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Engineering
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Materials Engineering
    108 rdf:type schema:DefinedTerm
    109 sg:grant.8252205 http://pending.schema.org/fundedItem sg:pub.10.1007/s10825-017-0977-8
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1036340 schema:issn 1569-8025
    112 1572-8137
    113 schema:name Journal of Computational Electronics
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010633271150.02 schema:affiliation grid-institutes:grid.218292.2
    117 schema:familyName Cao
    118 schema:givenName Hanxing
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010633271150.02
    120 rdf:type schema:Person
    121 sg:person.011752666433.50 schema:affiliation grid-institutes:grid.218292.2
    122 schema:familyName Yu
    123 schema:givenName Jie
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011752666433.50
    125 rdf:type schema:Person
    126 sg:person.016130672433.83 schema:affiliation grid-institutes:grid.218292.2
    127 schema:familyName Cao
    128 schema:givenName Jianchun
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130672433.83
    130 rdf:type schema:Person
    131 sg:person.016242356377.16 schema:affiliation grid-institutes:grid.218292.2
    132 schema:familyName Zhou
    133 schema:givenName Zhaobo
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242356377.16
    135 rdf:type schema:Person
    136 sg:person.07577164716.91 schema:affiliation grid-institutes:grid.218292.2
    137 schema:familyName Zhou
    138 schema:givenName Xiaolong
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07577164716.91
    140 rdf:type schema:Person
    141 sg:pub.10.1557/mrs2000.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967620
    142 https://doi.org/10.1557/mrs2000.256
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.3938/jkps.67.1624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035434491
    145 https://doi.org/10.3938/jkps.67.1624
    146 rdf:type schema:CreativeWork
    147 grid-institutes:grid.218292.2 schema:alternateName Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China
    148 schema:name Department of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China
    149 Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, 650093, Kunming, China
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...