The Wigner equation in the presence of electromagnetic potentials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-28

AUTHORS

Mihail Nedjalkov, Josef Weinbub, Paul Ellinghaus, Siegfried Selberherr

ABSTRACT

An analysis of the possible formulations of the Wigner equation under a general gauge for the electric field is presented with an emphasis on the computational aspects of the problem. The numerical peculiarities of those formulations enable alternative computational strategies based on existing numerical methods applied in the Wigner formalism, such as finite difference or stochastic particle methods. The phase space formulation of the problem along with certain relations to classical mechanics offers an insight about the role of the gauge transforms in quantum mechanics. More... »

PAGES

888-893

References to SciGraph publications

  • 2002-07. A Wigner Function Based Ensemble Monte Carlo Approach for Accurate Incorporation of Quantum Effects in Device Simulation in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 1998. Bloch oscillations and Wannier—Stark localization in semiconductor superlattices in THEORY OF TRANSPORT PROPERTIES OF SEMICONDUCTOR NANOSTRUCTURES
  • 2006-12-09. An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 2011-05-04. Wigner Function Approach in NANO-ELECTRONIC DEVICES
  • 1929-07. Über die Quantenmechanik der Elektronen in Kristallgittern in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10825-015-0732-y

    DOI

    http://dx.doi.org/10.1007/s10825-015-0732-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007180717


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nedjalkov", 
            "givenName": "Mihail", 
            "id": "sg:person.011142023427.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weinbub", 
            "givenName": "Josef", 
            "id": "sg:person.011312454563.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellinghaus", 
            "givenName": "Paul", 
            "id": "sg:person.016442755635.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Selberherr", 
            "givenName": "Siegfried", 
            "id": "sg:person.013033344117.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4615-5807-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049917141", 
              "https://doi.org/10.1007/978-1-4615-5807-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01339455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039883179", 
              "https://doi.org/10.1007/bf01339455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8840-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000056754", 
              "https://doi.org/10.1007/978-1-4419-8840-9_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10825-006-0044-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044547188", 
              "https://doi.org/10.1007/s10825-006-0044-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020711726836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005107807", 
              "https://doi.org/10.1023/a:1020711726836"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07-28", 
        "datePublishedReg": "2015-07-28", 
        "description": "An analysis of the possible formulations of the Wigner equation under a general gauge for the electric field is presented with an emphasis on the computational aspects of the problem. The numerical peculiarities of those formulations enable alternative computational strategies based on existing numerical methods applied in the Wigner formalism, such as finite difference or stochastic particle methods. The phase space formulation of the problem along with certain relations to classical mechanics offers an insight about the role of the gauge transforms in quantum mechanics.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10825-015-0732-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036340", 
            "issn": [
              "1569-8025", 
              "1572-8137"
            ], 
            "name": "Journal of Computational Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "Wigner equation", 
          "phase space formulation", 
          "stochastic particle method", 
          "alternative computational strategies", 
          "classical mechanics", 
          "finite differences", 
          "space formulation", 
          "quantum mechanics", 
          "electromagnetic potentials", 
          "computational aspects", 
          "Wigner formalism", 
          "numerical method", 
          "general gauge", 
          "numerical peculiarities", 
          "particle method", 
          "possible formulations", 
          "equations", 
          "certain relations", 
          "computational strategy", 
          "electric field", 
          "mechanics", 
          "formulation", 
          "problem", 
          "formalism", 
          "gauge", 
          "field", 
          "method", 
          "peculiarities", 
          "relation", 
          "emphasis", 
          "analysis", 
          "potential", 
          "aspects", 
          "insights", 
          "presence", 
          "strategies", 
          "differences", 
          "role"
        ], 
        "name": "The Wigner equation in the presence of electromagnetic potentials", 
        "pagination": "888-893", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007180717"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10825-015-0732-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10825-015-0732-y", 
          "https://app.dimensions.ai/details/publication/pub.1007180717"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_647.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10825-015-0732-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0732-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0732-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0732-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0732-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      70 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10825-015-0732-y schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:09
    4 anzsrc-for:0906
    5 schema:author N4b70167bc98d42daad2223b55a201101
    6 schema:citation sg:pub.10.1007/978-1-4419-8840-9_5
    7 sg:pub.10.1007/978-1-4615-5807-1_9
    8 sg:pub.10.1007/bf01339455
    9 sg:pub.10.1007/s10825-006-0044-3
    10 sg:pub.10.1023/a:1020711726836
    11 schema:datePublished 2015-07-28
    12 schema:datePublishedReg 2015-07-28
    13 schema:description An analysis of the possible formulations of the Wigner equation under a general gauge for the electric field is presented with an emphasis on the computational aspects of the problem. The numerical peculiarities of those formulations enable alternative computational strategies based on existing numerical methods applied in the Wigner formalism, such as finite difference or stochastic particle methods. The phase space formulation of the problem along with certain relations to classical mechanics offers an insight about the role of the gauge transforms in quantum mechanics.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N3a00ca4f7b2e474d9b536c49491f9466
    18 N70b1a90b0a3f44749d5dbdbac7ce516d
    19 sg:journal.1036340
    20 schema:keywords Wigner equation
    21 Wigner formalism
    22 alternative computational strategies
    23 analysis
    24 aspects
    25 certain relations
    26 classical mechanics
    27 computational aspects
    28 computational strategy
    29 differences
    30 electric field
    31 electromagnetic potentials
    32 emphasis
    33 equations
    34 field
    35 finite differences
    36 formalism
    37 formulation
    38 gauge
    39 general gauge
    40 insights
    41 mechanics
    42 method
    43 numerical method
    44 numerical peculiarities
    45 particle method
    46 peculiarities
    47 phase space formulation
    48 possible formulations
    49 potential
    50 presence
    51 problem
    52 quantum mechanics
    53 relation
    54 role
    55 space formulation
    56 stochastic particle method
    57 strategies
    58 schema:name The Wigner equation in the presence of electromagnetic potentials
    59 schema:pagination 888-893
    60 schema:productId Nbf2b092784ee40148c95a498df67f4b1
    61 Ne15ff8a08c7143ad9f5ec5d5de5b0b73
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007180717
    63 https://doi.org/10.1007/s10825-015-0732-y
    64 schema:sdDatePublished 2022-05-20T07:30
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Na5c9bd386e6047fd815f71bfba2e137f
    67 schema:url https://doi.org/10.1007/s10825-015-0732-y
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N062217b5ff1a4278a0e2d7ccfb0921d2 rdf:first sg:person.011312454563.88
    72 rdf:rest N45eadc7a853e4314bf0c208238a97e32
    73 N3a00ca4f7b2e474d9b536c49491f9466 schema:issueNumber 4
    74 rdf:type schema:PublicationIssue
    75 N45eadc7a853e4314bf0c208238a97e32 rdf:first sg:person.016442755635.85
    76 rdf:rest Ncf1dc9a3dac84a53990d5b04e0736920
    77 N4b70167bc98d42daad2223b55a201101 rdf:first sg:person.011142023427.48
    78 rdf:rest N062217b5ff1a4278a0e2d7ccfb0921d2
    79 N70b1a90b0a3f44749d5dbdbac7ce516d schema:volumeNumber 14
    80 rdf:type schema:PublicationVolume
    81 Na5c9bd386e6047fd815f71bfba2e137f schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Nbf2b092784ee40148c95a498df67f4b1 schema:name dimensions_id
    84 schema:value pub.1007180717
    85 rdf:type schema:PropertyValue
    86 Ncf1dc9a3dac84a53990d5b04e0736920 rdf:first sg:person.013033344117.92
    87 rdf:rest rdf:nil
    88 Ne15ff8a08c7143ad9f5ec5d5de5b0b73 schema:name doi
    89 schema:value 10.1007/s10825-015-0732-y
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Physical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Optical Physics
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Engineering
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Electrical and Electronic Engineering
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1036340 schema:issn 1569-8025
    104 1572-8137
    105 schema:name Journal of Computational Electronics
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
    109 schema:familyName Nedjalkov
    110 schema:givenName Mihail
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
    112 rdf:type schema:Person
    113 sg:person.011312454563.88 schema:affiliation grid-institutes:grid.5329.d
    114 schema:familyName Weinbub
    115 schema:givenName Josef
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88
    117 rdf:type schema:Person
    118 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
    119 schema:familyName Selberherr
    120 schema:givenName Siegfried
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
    122 rdf:type schema:Person
    123 sg:person.016442755635.85 schema:affiliation grid-institutes:grid.5329.d
    124 schema:familyName Ellinghaus
    125 schema:givenName Paul
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-1-4419-8840-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000056754
    129 https://doi.org/10.1007/978-1-4419-8840-9_5
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-1-4615-5807-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049917141
    132 https://doi.org/10.1007/978-1-4615-5807-1_9
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01339455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883179
    135 https://doi.org/10.1007/bf01339455
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10825-006-0044-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547188
    138 https://doi.org/10.1007/s10825-006-0044-3
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1023/a:1020711726836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005107807
    141 https://doi.org/10.1023/a:1020711726836
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria
    144 schema:name Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...