Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-24

AUTHORS

Josef Weinbub, Paul Ellinghaus, Mihail Nedjalkov

ABSTRACT

A domain decomposition approach for the parallelization of the Wigner Monte Carlo method allows the huge memory requirements to be distributed amongst many computational units, thereby making large multi-dimensional simulations feasible. Two domain decomposition techniques—a uniform slab and uniform block decomposition—are compared and the design and implementation of the block decomposition approach, using the message passing interface, is discussed. The parallel performance of the two approaches is evaluated by simulating a representative physical problem. Our results show that the presumably inferior slab decomposition method is in fact superior to the block decomposition approach, due to the additional overhead incurred by the block decomposition method to set up its communication layer. More... »

PAGES

922-929

References to SciGraph publications

  • 2014-10-24. Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 2014-06-26. The Role of Annihilation in a Wigner Monte Carlo Approach in LARGE-SCALE SCIENTIFIC COMPUTING
  • 2015-11-29. Parallelization of the Two-Dimensional Wigner Monte Carlo Method in LARGE-SCALE SCIENTIFIC COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10825-015-0730-0

    DOI

    http://dx.doi.org/10.1007/s10825-015-0730-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034127306


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weinbub", 
            "givenName": "Josef", 
            "id": "sg:person.011312454563.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellinghaus", 
            "givenName": "Paul", 
            "id": "sg:person.016442755635.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29/E360, 1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nedjalkov", 
            "givenName": "Mihail", 
            "id": "sg:person.011142023427.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-26520-9_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050419978", 
              "https://doi.org/10.1007/978-3-319-26520-9_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10825-014-0635-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021367527", 
              "https://doi.org/10.1007/s10825-014-0635-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-43880-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031605855", 
              "https://doi.org/10.1007/978-3-662-43880-0_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07-24", 
        "datePublishedReg": "2015-07-24", 
        "description": "A domain decomposition approach for the parallelization of the Wigner Monte Carlo method allows the huge memory requirements to be distributed amongst many computational units, thereby making large multi-dimensional simulations feasible. Two domain decomposition techniques\u2014a uniform slab and uniform block decomposition\u2014are compared and the design and implementation of the block decomposition approach, using the message passing interface, is discussed. The parallel performance of the two approaches is evaluated by simulating a representative physical problem. Our results show that the presumably inferior slab decomposition method is in fact superior to the block decomposition approach, due to the additional overhead incurred by the block decomposition method to set up its communication layer.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10825-015-0730-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036340", 
            "issn": [
              "1569-8025", 
              "1572-8137"
            ], 
            "name": "Journal of Computational Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "decomposition approach", 
          "huge memory requirement", 
          "block decomposition method", 
          "communication layer", 
          "computational units", 
          "domain decomposition strategy", 
          "additional overhead", 
          "parallel performance", 
          "memory requirements", 
          "domain decomposition approach", 
          "Wigner Monte Carlo method", 
          "domain decomposition technique", 
          "decomposition strategy", 
          "decomposition method", 
          "block decomposition", 
          "decomposition technique", 
          "overhead", 
          "parallelization", 
          "messages", 
          "implementation", 
          "requirements", 
          "method", 
          "interface", 
          "multi-dimensional simulations", 
          "Monte Carlo method", 
          "performance", 
          "design", 
          "simulations", 
          "technique", 
          "Carlo method", 
          "decomposition", 
          "strategies", 
          "physical problems", 
          "results", 
          "fact", 
          "units", 
          "uniform slab", 
          "layer", 
          "slab", 
          "approach", 
          "problem"
        ], 
        "name": "Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method", 
        "pagination": "922-929", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034127306"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10825-015-0730-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10825-015-0730-0", 
          "https://app.dimensions.ai/details/publication/pub.1034127306"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_660.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10825-015-0730-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0730-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0730-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0730-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0730-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      22 PREDICATES      71 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10825-015-0730-0 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:09
    4 anzsrc-for:0906
    5 schema:author Ne7ad5c6a65d54616ac8b024fdd9af3fb
    6 schema:citation sg:pub.10.1007/978-3-319-26520-9_34
    7 sg:pub.10.1007/978-3-662-43880-0_20
    8 sg:pub.10.1007/s10825-014-0635-3
    9 schema:datePublished 2015-07-24
    10 schema:datePublishedReg 2015-07-24
    11 schema:description A domain decomposition approach for the parallelization of the Wigner Monte Carlo method allows the huge memory requirements to be distributed amongst many computational units, thereby making large multi-dimensional simulations feasible. Two domain decomposition techniques—a uniform slab and uniform block decomposition—are compared and the design and implementation of the block decomposition approach, using the message passing interface, is discussed. The parallel performance of the two approaches is evaluated by simulating a representative physical problem. Our results show that the presumably inferior slab decomposition method is in fact superior to the block decomposition approach, due to the additional overhead incurred by the block decomposition method to set up its communication layer.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N96bbb4e5238d46898885f036aa9d52b2
    16 N97b65de5addf4a54bf38270ecb13ef6b
    17 sg:journal.1036340
    18 schema:keywords Carlo method
    19 Monte Carlo method
    20 Wigner Monte Carlo method
    21 additional overhead
    22 approach
    23 block decomposition
    24 block decomposition method
    25 communication layer
    26 computational units
    27 decomposition
    28 decomposition approach
    29 decomposition method
    30 decomposition strategy
    31 decomposition technique
    32 design
    33 domain decomposition approach
    34 domain decomposition strategy
    35 domain decomposition technique
    36 fact
    37 huge memory requirement
    38 implementation
    39 interface
    40 layer
    41 memory requirements
    42 messages
    43 method
    44 multi-dimensional simulations
    45 overhead
    46 parallel performance
    47 parallelization
    48 performance
    49 physical problems
    50 problem
    51 requirements
    52 results
    53 simulations
    54 slab
    55 strategies
    56 technique
    57 uniform slab
    58 units
    59 schema:name Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method
    60 schema:pagination 922-929
    61 schema:productId N208fefef760a4615802b6cf039937a19
    62 Nb01ba41c6d4c4c7cb8c0ea0c1d22305d
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034127306
    64 https://doi.org/10.1007/s10825-015-0730-0
    65 schema:sdDatePublished 2022-05-20T07:31
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N1ad2453a8621486b8111c1307aaa28c4
    68 schema:url https://doi.org/10.1007/s10825-015-0730-0
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N1ad2453a8621486b8111c1307aaa28c4 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N208fefef760a4615802b6cf039937a19 schema:name doi
    75 schema:value 10.1007/s10825-015-0730-0
    76 rdf:type schema:PropertyValue
    77 N53500b6046294542abcc53ebd5eef1aa rdf:first sg:person.011142023427.48
    78 rdf:rest rdf:nil
    79 N96bbb4e5238d46898885f036aa9d52b2 schema:volumeNumber 14
    80 rdf:type schema:PublicationVolume
    81 N97b65de5addf4a54bf38270ecb13ef6b schema:issueNumber 4
    82 rdf:type schema:PublicationIssue
    83 Nb01ba41c6d4c4c7cb8c0ea0c1d22305d schema:name dimensions_id
    84 schema:value pub.1034127306
    85 rdf:type schema:PropertyValue
    86 Nc1cf73911f3c49c0a6dbe6ed68b30faf rdf:first sg:person.016442755635.85
    87 rdf:rest N53500b6046294542abcc53ebd5eef1aa
    88 Ne7ad5c6a65d54616ac8b024fdd9af3fb rdf:first sg:person.011312454563.88
    89 rdf:rest Nc1cf73911f3c49c0a6dbe6ed68b30faf
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Optical Physics
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Engineering
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Electrical and Electronic Engineering
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1036340 schema:issn 1569-8025
    103 1572-8137
    104 schema:name Journal of Computational Electronics
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
    108 schema:familyName Nedjalkov
    109 schema:givenName Mihail
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
    111 rdf:type schema:Person
    112 sg:person.011312454563.88 schema:affiliation grid-institutes:grid.5329.d
    113 schema:familyName Weinbub
    114 schema:givenName Josef
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312454563.88
    116 rdf:type schema:Person
    117 sg:person.016442755635.85 schema:affiliation grid-institutes:grid.5329.d
    118 schema:familyName Ellinghaus
    119 schema:givenName Paul
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-319-26520-9_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050419978
    123 https://doi.org/10.1007/978-3-319-26520-9_34
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-662-43880-0_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031605855
    126 https://doi.org/10.1007/978-3-662-43880-0_20
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10825-014-0635-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021367527
    129 https://doi.org/10.1007/s10825-014-0635-3
    130 rdf:type schema:CreativeWork
    131 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria
    132 schema:name Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040, Vienna, Austria
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...