Boundary conditions and the Wigner equation solution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-19

AUTHORS

Ivan Dimov, Mihail Nedjalkov, Jean-Michel Sellier, Siegfried Selberherr

ABSTRACT

We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not be separated from the physical attributes of the problem. In the presented analysis these two sides of the problem mutually interplay, which is of importance for understanding of the peculiarities of Wigner-quantum transport. The problem is first formulated as the long time limit of a general evolution process posed by initial and boundary conditions. Then the Wigner equation is reformulated as a second kind of a Fredholm integral equation which is of Volterra type with respect to the time variable. The analysis of the convergence of the corresponding Neumann series, sometimes called Liouville–Neumann series, relies on the assumption for reasonable local conditions obeyed by the kernel. More... »

PAGES

859-863

References to SciGraph publications

  • 2003-12. Proximity Effect of the Contacts on Electron Transport in Mesoscopic Devices in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • 2011-05-04. Wigner Function Approach in NANO-ELECTRONIC DEVICES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10825-015-0720-2

    DOI

    http://dx.doi.org/10.1007/s10825-015-0720-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031881115


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.424988.b", 
              "name": [
                "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dimov", 
            "givenName": "Ivan", 
            "id": "sg:person.013060500063.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nedjalkov", 
            "givenName": "Mihail", 
            "id": "sg:person.011142023427.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.424988.b", 
              "name": [
                "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sellier", 
            "givenName": "Jean-Michel", 
            "id": "sg:person.016145177374.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145177374.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Selberherr", 
            "givenName": "Siegfried", 
            "id": "sg:person.013033344117.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:jcel.0000011414.18872.fa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012895297", 
              "https://doi.org/10.1023/b:jcel.0000011414.18872.fa"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8840-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000056754", 
              "https://doi.org/10.1007/978-1-4419-8840-9_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07-19", 
        "datePublishedReg": "2015-07-19", 
        "description": "We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not be separated from the physical attributes of the problem. In the presented analysis these two sides of the problem mutually interplay, which is of importance for understanding of the peculiarities of Wigner-quantum transport. The problem is first formulated as the long time limit of a general evolution process posed by initial and boundary conditions. Then the Wigner equation is reformulated as a second kind of a Fredholm integral equation which is of Volterra type with respect to the time variable. The analysis of the convergence of the corresponding Neumann series, sometimes called Liouville\u2013Neumann series, relies on the assumption for reasonable local conditions obeyed by the kernel.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10825-015-0720-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036340", 
            "issn": [
              "1569-8025", 
              "1572-8137"
            ], 
            "name": "Journal of Computational Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "Wigner equation", 
          "boundary conditions", 
          "corresponding Neumann series", 
          "classical particle trajectories", 
          "Fredholm integral equation", 
          "long-time limit", 
          "Liouville-Neumann series", 
          "Neumann series expansion", 
          "corresponding integral form", 
          "general evolution process", 
          "Volterra type", 
          "mathematical aspects", 
          "equation solution", 
          "integral equations", 
          "Neumann series", 
          "integral form", 
          "second kind", 
          "series expansion", 
          "equations", 
          "particle trajectories", 
          "problem", 
          "solution", 
          "uniqueness", 
          "time limit", 
          "evolution process", 
          "convergence", 
          "electron transport", 
          "kernel", 
          "trajectories", 
          "existence", 
          "assumption", 
          "conditions", 
          "transport", 
          "terms", 
          "expansion", 
          "limit", 
          "nanostructures", 
          "respect", 
          "help", 
          "analysis", 
          "kind", 
          "interplay", 
          "form", 
          "series", 
          "peculiarities", 
          "physical attributes", 
          "time", 
          "process", 
          "types", 
          "local conditions", 
          "aspects", 
          "side", 
          "presence", 
          "importance", 
          "understanding", 
          "attributes"
        ], 
        "name": "Boundary conditions and the Wigner equation solution", 
        "pagination": "859-863", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031881115"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10825-015-0720-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10825-015-0720-2", 
          "https://app.dimensions.ai/details/publication/pub.1031881115"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_671.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10825-015-0720-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0720-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0720-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0720-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-015-0720-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      22 PREDICATES      85 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10825-015-0720-2 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:09
    4 anzsrc-for:0906
    5 schema:author N1432bb9fb5794a19bb62d2b5e0400e15
    6 schema:citation sg:pub.10.1007/978-1-4419-8840-9_5
    7 sg:pub.10.1023/b:jcel.0000011414.18872.fa
    8 schema:datePublished 2015-07-19
    9 schema:datePublishedReg 2015-07-19
    10 schema:description We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not be separated from the physical attributes of the problem. In the presented analysis these two sides of the problem mutually interplay, which is of importance for understanding of the peculiarities of Wigner-quantum transport. The problem is first formulated as the long time limit of a general evolution process posed by initial and boundary conditions. Then the Wigner equation is reformulated as a second kind of a Fredholm integral equation which is of Volterra type with respect to the time variable. The analysis of the convergence of the corresponding Neumann series, sometimes called Liouville–Neumann series, relies on the assumption for reasonable local conditions obeyed by the kernel.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N833a289418094bd2a67e3859dd5127fa
    15 N9b91126a5def42deac27812775b27ea5
    16 sg:journal.1036340
    17 schema:keywords Fredholm integral equation
    18 Liouville-Neumann series
    19 Neumann series
    20 Neumann series expansion
    21 Volterra type
    22 Wigner equation
    23 analysis
    24 aspects
    25 assumption
    26 attributes
    27 boundary conditions
    28 classical particle trajectories
    29 conditions
    30 convergence
    31 corresponding Neumann series
    32 corresponding integral form
    33 electron transport
    34 equation solution
    35 equations
    36 evolution process
    37 existence
    38 expansion
    39 form
    40 general evolution process
    41 help
    42 importance
    43 integral equations
    44 integral form
    45 interplay
    46 kernel
    47 kind
    48 limit
    49 local conditions
    50 long-time limit
    51 mathematical aspects
    52 nanostructures
    53 particle trajectories
    54 peculiarities
    55 physical attributes
    56 presence
    57 problem
    58 process
    59 respect
    60 second kind
    61 series
    62 series expansion
    63 side
    64 solution
    65 terms
    66 time
    67 time limit
    68 trajectories
    69 transport
    70 types
    71 understanding
    72 uniqueness
    73 schema:name Boundary conditions and the Wigner equation solution
    74 schema:pagination 859-863
    75 schema:productId N1fba41a2a14e443ab37ff0c486db5dca
    76 N3ead9e81cf6e452fa6348249eea6b579
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031881115
    78 https://doi.org/10.1007/s10825-015-0720-2
    79 schema:sdDatePublished 2022-05-20T07:31
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N6c8b1ea6bfdb4564bbbeeb8d74422295
    82 schema:url https://doi.org/10.1007/s10825-015-0720-2
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N1432bb9fb5794a19bb62d2b5e0400e15 rdf:first sg:person.013060500063.42
    87 rdf:rest Nab8105abbad841e4a0e1f32941585c8a
    88 N18f4f0ed8a7a4d7683043e2c362027fb rdf:first sg:person.016145177374.75
    89 rdf:rest Nf06795b653be4ddba9e8d2c3fb384b4c
    90 N1fba41a2a14e443ab37ff0c486db5dca schema:name doi
    91 schema:value 10.1007/s10825-015-0720-2
    92 rdf:type schema:PropertyValue
    93 N3ead9e81cf6e452fa6348249eea6b579 schema:name dimensions_id
    94 schema:value pub.1031881115
    95 rdf:type schema:PropertyValue
    96 N6c8b1ea6bfdb4564bbbeeb8d74422295 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N833a289418094bd2a67e3859dd5127fa schema:issueNumber 4
    99 rdf:type schema:PublicationIssue
    100 N9b91126a5def42deac27812775b27ea5 schema:volumeNumber 14
    101 rdf:type schema:PublicationVolume
    102 Nab8105abbad841e4a0e1f32941585c8a rdf:first sg:person.011142023427.48
    103 rdf:rest N18f4f0ed8a7a4d7683043e2c362027fb
    104 Nf06795b653be4ddba9e8d2c3fb384b4c rdf:first sg:person.013033344117.92
    105 rdf:rest rdf:nil
    106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Physical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Optical Physics
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Engineering
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Electrical and Electronic Engineering
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1036340 schema:issn 1569-8025
    119 1572-8137
    120 schema:name Journal of Computational Electronics
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
    124 schema:familyName Nedjalkov
    125 schema:givenName Mihail
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
    127 rdf:type schema:Person
    128 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
    129 schema:familyName Selberherr
    130 schema:givenName Siegfried
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
    132 rdf:type schema:Person
    133 sg:person.013060500063.42 schema:affiliation grid-institutes:grid.424988.b
    134 schema:familyName Dimov
    135 schema:givenName Ivan
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42
    137 rdf:type schema:Person
    138 sg:person.016145177374.75 schema:affiliation grid-institutes:grid.424988.b
    139 schema:familyName Sellier
    140 schema:givenName Jean-Michel
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145177374.75
    142 rdf:type schema:Person
    143 sg:pub.10.1007/978-1-4419-8840-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000056754
    144 https://doi.org/10.1007/978-1-4419-8840-9_5
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1023/b:jcel.0000011414.18872.fa schema:sameAs https://app.dimensions.ai/details/publication/pub.1012895297
    147 https://doi.org/10.1023/b:jcel.0000011414.18872.fa
    148 rdf:type schema:CreativeWork
    149 grid-institutes:grid.424988.b schema:alternateName IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria
    150 schema:name IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 25A, 1113, Sofia, Bulgaria
    151 rdf:type schema:Organization
    152 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, 1040, Wien, Austria
    153 schema:name Institute for Microelectronics, TU Wien, 1040, Wien, Austria
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...