Ontology type: schema:ScholarlyArticle
2013-06-12
AUTHORSPhilipp Schwaha, Damien Querlioz, Philippe Dollfus, Jérôme Saint-Martin, Mihail Nedjalkov, Siegfried Selberherr
ABSTRACTWe demonstrate the ability of the phase space formulation of quantum mechanics to provide convenient means and intuitive notions for exploring the process of transition from a quantum to a classical state known as decoherence. The Wigner equation, which is usually relevant for electron transport in nanostructures, augmented by the Boltzmann scattering operator is now applied to the time dependent transport problems which may be considered as benchmark examples for the decoherence role of phonons in semiconductor devices. Simulation results maintained by theoretical analysis show how scattering effectively destroys the interference effects. The initial coherence in the wave vector distribution is pushed towards the equilibrium distribution. In particular scattering by phonons hinders the natural spread of the density with time and advances it towards a classical localization. Furthermore, the decoherence effect due to phonons, is measured by the purity of the Wigner state, which decreases from its initial value of 1, with a rate depending on the lattice temperature, and by a functional comparing diagonal with off-diagonal elements of the density matrix. More... »
PAGES388-396
http://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9
DOIhttp://dx.doi.org/10.1007/s10825-013-0480-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017839564
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.75499.36",
"name": [
"Institute for Microelectronics, TU Wien, 1040, Wien, Austria",
"AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Schwaha",
"givenName": "Philipp",
"id": "sg:person.015555701117.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555701117.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France",
"id": "http://www.grid.ac/institutes/grid.4444.0",
"name": [
"Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
],
"type": "Organization"
},
"familyName": "Querlioz",
"givenName": "Damien",
"id": "sg:person.01333311735.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311735.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France",
"id": "http://www.grid.ac/institutes/grid.4444.0",
"name": [
"Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
],
"type": "Organization"
},
"familyName": "Dollfus",
"givenName": "Philippe",
"id": "sg:person.0575552722.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575552722.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France",
"id": "http://www.grid.ac/institutes/grid.4444.0",
"name": [
"Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
],
"type": "Organization"
},
"familyName": "Saint-Martin",
"givenName": "J\u00e9r\u00f4me",
"id": "sg:person.01256356042.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256356042.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "Mihail",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "Siegfried",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10825-009-0281-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046675626",
"https://doi.org/10.1007/s10825-009-0281-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009090089",
"https://doi.org/10.1038/nature08005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjst/e2007-00362-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011477592",
"https://doi.org/10.1140/epjst/e2007-00362-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-8840-9_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000056754",
"https://doi.org/10.1007/978-1-4419-8840-9_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10825-006-0041-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052808452",
"https://doi.org/10.1007/s10825-006-0041-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-05328-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041991125",
"https://doi.org/10.1007/978-3-662-05328-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-06-12",
"datePublishedReg": "2013-06-12",
"description": "We demonstrate the ability of the phase space formulation of quantum mechanics to provide convenient means and intuitive notions for exploring the process of transition from a quantum to a classical state known as decoherence. The Wigner equation, which is usually relevant for electron transport in nanostructures, augmented by the Boltzmann scattering operator is now applied to the time dependent transport problems which may be considered as benchmark examples for the decoherence role of phonons in semiconductor devices. Simulation results maintained by theoretical analysis show how scattering effectively destroys the interference effects. The initial coherence in the wave vector distribution is pushed towards the equilibrium distribution. In particular scattering by phonons hinders the natural spread of the density with time and advances it towards a classical localization. Furthermore, the decoherence effect due to phonons, is measured by the purity of the Wigner state, which decreases from its initial value of 1, with a rate depending on the lattice temperature, and by a functional comparing diagonal with off-diagonal elements of the density matrix.",
"genre": "article",
"id": "sg:pub.10.1007/s10825-013-0480-9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.6188824",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1036340",
"issn": [
"1569-8025",
"1572-8137"
],
"name": "Journal of Computational Electronics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"decoherence effects",
"time-dependent transport problems",
"Wigner function formalism",
"phase space formulation",
"wave vector distribution",
"Wigner states",
"initial coherence",
"Wigner equation",
"quantum mechanics",
"classical states",
"lattice temperature",
"particular scattering",
"space formulation",
"classical localization",
"function formalism",
"transport problems",
"density matrix",
"benchmark examples",
"phonons",
"electron transport",
"interference effects",
"semiconductor devices",
"diagonal elements",
"equilibrium distribution",
"theoretical analysis",
"simulation results",
"intuitive notion",
"vector distribution",
"initial value",
"decoherence",
"quantum",
"scattering",
"equations",
"Boltzmann",
"nanostructures",
"formalism",
"operators",
"coherence",
"mechanics",
"state",
"transition",
"distribution",
"formulation",
"problem",
"devices",
"density",
"matrix",
"convenient means",
"temperature",
"transport",
"notion",
"effect",
"purity",
"means",
"results",
"elements",
"values",
"analysis",
"comparing",
"process",
"spread",
"time",
"localization",
"example",
"natural spread",
"process of transition",
"rate",
"ability",
"role"
],
"name": "Decoherence effects in the Wigner function formalism",
"pagination": "388-396",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017839564"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10825-013-0480-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10825-013-0480-9",
"https://app.dimensions.ai/details/publication/pub.1017839564"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_599.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10825-013-0480-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'
This table displays all metadata directly associated to this object as RDF triples.
195 TRIPLES
22 PREDICATES
100 URIs
86 LITERALS
6 BLANK NODES