Decoherence effects in the Wigner function formalism View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06-12

AUTHORS

Philipp Schwaha, Damien Querlioz, Philippe Dollfus, Jérôme Saint-Martin, Mihail Nedjalkov, Siegfried Selberherr

ABSTRACT

We demonstrate the ability of the phase space formulation of quantum mechanics to provide convenient means and intuitive notions for exploring the process of transition from a quantum to a classical state known as decoherence. The Wigner equation, which is usually relevant for electron transport in nanostructures, augmented by the Boltzmann scattering operator is now applied to the time dependent transport problems which may be considered as benchmark examples for the decoherence role of phonons in semiconductor devices. Simulation results maintained by theoretical analysis show how scattering effectively destroys the interference effects. The initial coherence in the wave vector distribution is pushed towards the equilibrium distribution. In particular scattering by phonons hinders the natural spread of the density with time and advances it towards a classical localization. Furthermore, the decoherence effect due to phonons, is measured by the purity of the Wigner state, which decreases from its initial value of 1, with a rate depending on the lattice temperature, and by a functional comparing diagonal with off-diagonal elements of the density matrix. More... »

PAGES

388-396

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9

DOI

http://dx.doi.org/10.1007/s10825-013-0480-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017839564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.75499.36", 
          "name": [
            "Institute for Microelectronics, TU Wien, 1040, Wien, Austria", 
            "AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwaha", 
        "givenName": "Philipp", 
        "id": "sg:person.015555701117.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555701117.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Querlioz", 
        "givenName": "Damien", 
        "id": "sg:person.01333311735.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311735.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dollfus", 
        "givenName": "Philippe", 
        "id": "sg:person.0575552722.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575552722.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Institut d\u2019Electronique Fondamentale, Universit\u00e9 Paris-Sud, CNRS, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saint-Martin", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01256356042.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256356042.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, 1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, 1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10825-009-0281-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046675626", 
          "https://doi.org/10.1007/s10825-009-0281-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009090089", 
          "https://doi.org/10.1038/nature08005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2007-00362-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011477592", 
          "https://doi.org/10.1140/epjst/e2007-00362-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8840-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000056754", 
          "https://doi.org/10.1007/978-1-4419-8840-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10825-006-0041-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052808452", 
          "https://doi.org/10.1007/s10825-006-0041-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05328-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041991125", 
          "https://doi.org/10.1007/978-3-662-05328-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-12", 
    "datePublishedReg": "2013-06-12", 
    "description": "We demonstrate the ability of the phase space formulation of quantum mechanics to provide convenient means and intuitive notions for exploring the process of transition from a quantum to a classical state known as decoherence. The Wigner equation, which is usually relevant for electron transport in nanostructures, augmented by the Boltzmann scattering operator is now applied to the time dependent transport problems which may be considered as benchmark examples for the decoherence role of phonons in semiconductor devices. Simulation results maintained by theoretical analysis show how scattering effectively destroys the interference effects. The initial coherence in the wave vector distribution is pushed towards the equilibrium distribution. In particular scattering by phonons hinders the natural spread of the density with time and advances it towards a classical localization. Furthermore, the decoherence effect due to phonons, is measured by the purity of the Wigner state, which decreases from its initial value of 1, with a rate depending on the lattice temperature, and by a functional comparing diagonal with off-diagonal elements of the density matrix.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10825-013-0480-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6188824", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036340", 
        "issn": [
          "1569-8025", 
          "1572-8137"
        ], 
        "name": "Journal of Computational Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "decoherence effects", 
      "time-dependent transport problems", 
      "Wigner function formalism", 
      "phase space formulation", 
      "wave vector distribution", 
      "Wigner states", 
      "initial coherence", 
      "Wigner equation", 
      "quantum mechanics", 
      "classical states", 
      "lattice temperature", 
      "particular scattering", 
      "space formulation", 
      "classical localization", 
      "function formalism", 
      "transport problems", 
      "density matrix", 
      "benchmark examples", 
      "phonons", 
      "electron transport", 
      "interference effects", 
      "semiconductor devices", 
      "diagonal elements", 
      "equilibrium distribution", 
      "theoretical analysis", 
      "simulation results", 
      "intuitive notion", 
      "vector distribution", 
      "initial value", 
      "decoherence", 
      "quantum", 
      "scattering", 
      "equations", 
      "Boltzmann", 
      "nanostructures", 
      "formalism", 
      "operators", 
      "coherence", 
      "mechanics", 
      "state", 
      "transition", 
      "distribution", 
      "formulation", 
      "problem", 
      "devices", 
      "density", 
      "matrix", 
      "convenient means", 
      "temperature", 
      "transport", 
      "notion", 
      "effect", 
      "purity", 
      "means", 
      "results", 
      "elements", 
      "values", 
      "analysis", 
      "comparing", 
      "process", 
      "spread", 
      "time", 
      "localization", 
      "example", 
      "natural spread", 
      "process of transition", 
      "rate", 
      "ability", 
      "role"
    ], 
    "name": "Decoherence effects in the Wigner function formalism", 
    "pagination": "388-396", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017839564"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10825-013-0480-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10825-013-0480-9", 
      "https://app.dimensions.ai/details/publication/pub.1017839564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_599.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10825-013-0480-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-013-0480-9'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      100 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10825-013-0480-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nb573008831334768af0530eb2a60ee60
4 schema:citation sg:pub.10.1007/978-1-4419-8840-9_5
5 sg:pub.10.1007/978-3-662-05328-7
6 sg:pub.10.1007/s10825-006-0041-6
7 sg:pub.10.1007/s10825-009-0281-3
8 sg:pub.10.1038/nature08005
9 sg:pub.10.1140/epjst/e2007-00362-9
10 schema:datePublished 2013-06-12
11 schema:datePublishedReg 2013-06-12
12 schema:description We demonstrate the ability of the phase space formulation of quantum mechanics to provide convenient means and intuitive notions for exploring the process of transition from a quantum to a classical state known as decoherence. The Wigner equation, which is usually relevant for electron transport in nanostructures, augmented by the Boltzmann scattering operator is now applied to the time dependent transport problems which may be considered as benchmark examples for the decoherence role of phonons in semiconductor devices. Simulation results maintained by theoretical analysis show how scattering effectively destroys the interference effects. The initial coherence in the wave vector distribution is pushed towards the equilibrium distribution. In particular scattering by phonons hinders the natural spread of the density with time and advances it towards a classical localization. Furthermore, the decoherence effect due to phonons, is measured by the purity of the Wigner state, which decreases from its initial value of 1, with a rate depending on the lattice temperature, and by a functional comparing diagonal with off-diagonal elements of the density matrix.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N94ee6cce880a4fe4bdec57cc97a637c4
17 Nca0490b0280b41f6b76a906d4c00a630
18 sg:journal.1036340
19 schema:keywords Boltzmann
20 Wigner equation
21 Wigner function formalism
22 Wigner states
23 ability
24 analysis
25 benchmark examples
26 classical localization
27 classical states
28 coherence
29 comparing
30 convenient means
31 decoherence
32 decoherence effects
33 density
34 density matrix
35 devices
36 diagonal elements
37 distribution
38 effect
39 electron transport
40 elements
41 equations
42 equilibrium distribution
43 example
44 formalism
45 formulation
46 function formalism
47 initial coherence
48 initial value
49 interference effects
50 intuitive notion
51 lattice temperature
52 localization
53 matrix
54 means
55 mechanics
56 nanostructures
57 natural spread
58 notion
59 operators
60 particular scattering
61 phase space formulation
62 phonons
63 problem
64 process
65 process of transition
66 purity
67 quantum
68 quantum mechanics
69 rate
70 results
71 role
72 scattering
73 semiconductor devices
74 simulation results
75 space formulation
76 spread
77 state
78 temperature
79 theoretical analysis
80 time
81 time-dependent transport problems
82 transition
83 transport
84 transport problems
85 values
86 vector distribution
87 wave vector distribution
88 schema:name Decoherence effects in the Wigner function formalism
89 schema:pagination 388-396
90 schema:productId N5738640d2a7b4fd2a52f4fa3bfbfb6d9
91 Nc7e58321b2d14416b246e29e9b2d3b01
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017839564
93 https://doi.org/10.1007/s10825-013-0480-9
94 schema:sdDatePublished 2022-05-20T07:29
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Ne7262cda73094b73acec76f83e29074a
97 schema:url https://doi.org/10.1007/s10825-013-0480-9
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N4218b026f4fa423096fdf26e86c3aad4 rdf:first sg:person.01333311735.09
102 rdf:rest N6838dffa80c94716be5b161a9110124f
103 N5738640d2a7b4fd2a52f4fa3bfbfb6d9 schema:name dimensions_id
104 schema:value pub.1017839564
105 rdf:type schema:PropertyValue
106 N6838dffa80c94716be5b161a9110124f rdf:first sg:person.0575552722.73
107 rdf:rest Nb8a569cbf047468fa3cf1a3d6e778cec
108 N6e93109f864b4d70be143ca26591789f rdf:first sg:person.013033344117.92
109 rdf:rest rdf:nil
110 N94ee6cce880a4fe4bdec57cc97a637c4 schema:issueNumber 3
111 rdf:type schema:PublicationIssue
112 Nb573008831334768af0530eb2a60ee60 rdf:first sg:person.015555701117.34
113 rdf:rest N4218b026f4fa423096fdf26e86c3aad4
114 Nb8a569cbf047468fa3cf1a3d6e778cec rdf:first sg:person.01256356042.41
115 rdf:rest Ndd62a1e63df54aa78dafcdd27aed63e4
116 Nc7e58321b2d14416b246e29e9b2d3b01 schema:name doi
117 schema:value 10.1007/s10825-013-0480-9
118 rdf:type schema:PropertyValue
119 Nca0490b0280b41f6b76a906d4c00a630 schema:volumeNumber 12
120 rdf:type schema:PublicationVolume
121 Ndd62a1e63df54aa78dafcdd27aed63e4 rdf:first sg:person.011142023427.48
122 rdf:rest N6e93109f864b4d70be143ca26591789f
123 Ne7262cda73094b73acec76f83e29074a schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
130 rdf:type schema:DefinedTerm
131 sg:grant.6188824 http://pending.schema.org/fundedItem sg:pub.10.1007/s10825-013-0480-9
132 rdf:type schema:MonetaryGrant
133 sg:journal.1036340 schema:issn 1569-8025
134 1572-8137
135 schema:name Journal of Computational Electronics
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
139 schema:familyName Nedjalkov
140 schema:givenName Mihail
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
142 rdf:type schema:Person
143 sg:person.01256356042.41 schema:affiliation grid-institutes:grid.4444.0
144 schema:familyName Saint-Martin
145 schema:givenName Jérôme
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256356042.41
147 rdf:type schema:Person
148 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
149 schema:familyName Selberherr
150 schema:givenName Siegfried
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
152 rdf:type schema:Person
153 sg:person.01333311735.09 schema:affiliation grid-institutes:grid.4444.0
154 schema:familyName Querlioz
155 schema:givenName Damien
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333311735.09
157 rdf:type schema:Person
158 sg:person.015555701117.34 schema:affiliation grid-institutes:grid.75499.36
159 schema:familyName Schwaha
160 schema:givenName Philipp
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555701117.34
162 rdf:type schema:Person
163 sg:person.0575552722.73 schema:affiliation grid-institutes:grid.4444.0
164 schema:familyName Dollfus
165 schema:givenName Philippe
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575552722.73
167 rdf:type schema:Person
168 sg:pub.10.1007/978-1-4419-8840-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000056754
169 https://doi.org/10.1007/978-1-4419-8840-9_5
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/978-3-662-05328-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041991125
172 https://doi.org/10.1007/978-3-662-05328-7
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10825-006-0041-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052808452
175 https://doi.org/10.1007/s10825-006-0041-6
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10825-009-0281-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046675626
178 https://doi.org/10.1007/s10825-009-0281-3
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature08005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009090089
181 https://doi.org/10.1038/nature08005
182 rdf:type schema:CreativeWork
183 sg:pub.10.1140/epjst/e2007-00362-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011477592
184 https://doi.org/10.1140/epjst/e2007-00362-9
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.4444.0 schema:alternateName Institut d’Electronique Fondamentale, Université Paris-Sud, CNRS, 91405, Orsay, France
187 schema:name Institut d’Electronique Fondamentale, Université Paris-Sud, CNRS, 91405, Orsay, France
188 rdf:type schema:Organization
189 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, 1040, Wien, Austria
190 schema:name Institute for Microelectronics, TU Wien, 1040, Wien, Austria
191 rdf:type schema:Organization
192 grid-institutes:grid.75499.36 schema:alternateName AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria
193 schema:name AVL List GmbH, Hans-List-Platz 1, 8020, Graz, Austria
194 Institute for Microelectronics, TU Wien, 1040, Wien, Austria
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...