2006-12-09
AUTHORSMihail Nedjalkov, Dragica Vasileska, Emanouil Atanassov, Vassil Palankovski
ABSTRACTTwo quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results. More... »
PAGES235-238
http://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y
DOIhttp://dx.doi.org/10.1007/s10825-006-0101-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045668695
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "Mihail",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA",
"id": "http://www.grid.ac/institutes/grid.215654.1",
"name": [
"Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA"
],
"type": "Organization"
},
"familyName": "Vasileska",
"givenName": "Dragica",
"id": "sg:person.01360124374.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124374.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424859.6",
"name": [
"IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Atanassov",
"givenName": "Emanouil",
"id": "sg:person.07406155655.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406155655.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Palankovski",
"givenName": "Vassil",
"id": "sg:person.013462243433.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462243433.84"
],
"type": "Person"
}
],
"datePublished": "2006-12-09",
"datePublishedReg": "2006-12-09",
"description": "Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results.",
"genre": "article",
"id": "sg:pub.10.1007/s10825-006-0101-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036340",
"issn": [
"1569-8025",
"1572-8137"
],
"name": "Journal of Computational Electronics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"keywords": [
"non-equilibrium carrier distribution",
"quantum kinetic model",
"effect of broadening",
"backward Monte Carlo method",
"quantum wires",
"carrier relaxation",
"classical trajectories",
"carrier distribution",
"dissipation process",
"Monte Carlo method",
"latter introduces",
"Carlo method",
"spatial transfer",
"phonons",
"collisions",
"broadening",
"nanowires",
"relaxation",
"transport",
"duration time",
"wire",
"basic differences",
"energy conservation",
"evolution",
"transfer",
"distribution",
"trajectories",
"model",
"simulation results",
"introduces",
"method",
"modification",
"process",
"effect",
"time",
"results",
"way",
"early stages",
"conservation",
"retardation",
"differences",
"stage",
"lack",
"treatment",
"way of treatment"
],
"name": "Ultrafast Wigner transport in quantum wires",
"pagination": "235-238",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045668695"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10825-006-0101-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10825-006-0101-y",
"https://app.dimensions.ai/details/publication/pub.1045668695"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_420.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10825-006-0101-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
21 PREDICATES
70 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10825-006-0101-y | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N2235c3b72fe54d5085bc37da6f983ced |
4 | ″ | schema:datePublished | 2006-12-09 |
5 | ″ | schema:datePublishedReg | 2006-12-09 |
6 | ″ | schema:description | Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | Na0d2758c79a94b7ab7e6d0d3d90004c3 |
11 | ″ | ″ | Ne81079a2de2e496a8a143b4acb742ba5 |
12 | ″ | ″ | sg:journal.1036340 |
13 | ″ | schema:keywords | Carlo method |
14 | ″ | ″ | Monte Carlo method |
15 | ″ | ″ | backward Monte Carlo method |
16 | ″ | ″ | basic differences |
17 | ″ | ″ | broadening |
18 | ″ | ″ | carrier distribution |
19 | ″ | ″ | carrier relaxation |
20 | ″ | ″ | classical trajectories |
21 | ″ | ″ | collisions |
22 | ″ | ″ | conservation |
23 | ″ | ″ | differences |
24 | ″ | ″ | dissipation process |
25 | ″ | ″ | distribution |
26 | ″ | ″ | duration time |
27 | ″ | ″ | early stages |
28 | ″ | ″ | effect |
29 | ″ | ″ | effect of broadening |
30 | ″ | ″ | energy conservation |
31 | ″ | ″ | evolution |
32 | ″ | ″ | introduces |
33 | ″ | ″ | lack |
34 | ″ | ″ | latter introduces |
35 | ″ | ″ | method |
36 | ″ | ″ | model |
37 | ″ | ″ | modification |
38 | ″ | ″ | nanowires |
39 | ″ | ″ | non-equilibrium carrier distribution |
40 | ″ | ″ | phonons |
41 | ″ | ″ | process |
42 | ″ | ″ | quantum kinetic model |
43 | ″ | ″ | quantum wires |
44 | ″ | ″ | relaxation |
45 | ″ | ″ | results |
46 | ″ | ″ | retardation |
47 | ″ | ″ | simulation results |
48 | ″ | ″ | spatial transfer |
49 | ″ | ″ | stage |
50 | ″ | ″ | time |
51 | ″ | ″ | trajectories |
52 | ″ | ″ | transfer |
53 | ″ | ″ | transport |
54 | ″ | ″ | treatment |
55 | ″ | ″ | way |
56 | ″ | ″ | way of treatment |
57 | ″ | ″ | wire |
58 | ″ | schema:name | Ultrafast Wigner transport in quantum wires |
59 | ″ | schema:pagination | 235-238 |
60 | ″ | schema:productId | N20b9d0bace8c4acfa5926c49b741ea8c |
61 | ″ | ″ | N2e0c13d857ee493bbae56bdf00cbe0e1 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045668695 |
63 | ″ | ″ | https://doi.org/10.1007/s10825-006-0101-y |
64 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | N76fe49d87e1e4f31a41b9ad3c887ea6c |
67 | ″ | schema:url | https://doi.org/10.1007/s10825-006-0101-y |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | articles |
70 | ″ | rdf:type | schema:ScholarlyArticle |
71 | N20b9d0bace8c4acfa5926c49b741ea8c | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1045668695 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N2235c3b72fe54d5085bc37da6f983ced | rdf:first | sg:person.011142023427.48 |
75 | ″ | rdf:rest | Nfe888c2e482c4f89b32ede2e29f13800 |
76 | N2e0c13d857ee493bbae56bdf00cbe0e1 | schema:name | doi |
77 | ″ | schema:value | 10.1007/s10825-006-0101-y |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N6f1ea50d1e5e4c21803196de9b47990e | rdf:first | sg:person.07406155655.21 |
80 | ″ | rdf:rest | N895829ae1b6b40e18a984a833841262c |
81 | N76fe49d87e1e4f31a41b9ad3c887ea6c | schema:name | Springer Nature - SN SciGraph project |
82 | ″ | rdf:type | schema:Organization |
83 | N895829ae1b6b40e18a984a833841262c | rdf:first | sg:person.013462243433.84 |
84 | ″ | rdf:rest | rdf:nil |
85 | Na0d2758c79a94b7ab7e6d0d3d90004c3 | schema:volumeNumber | 6 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | Ne81079a2de2e496a8a143b4acb742ba5 | schema:issueNumber | 1-3 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | Nfe888c2e482c4f89b32ede2e29f13800 | rdf:first | sg:person.01360124374.41 |
90 | ″ | rdf:rest | N6f1ea50d1e5e4c21803196de9b47990e |
91 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Physical Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:journal.1036340 | schema:issn | 1569-8025 |
98 | ″ | ″ | 1572-8137 |
99 | ″ | schema:name | Journal of Computational Electronics |
100 | ″ | schema:publisher | Springer Nature |
101 | ″ | rdf:type | schema:Periodical |
102 | sg:person.011142023427.48 | schema:affiliation | grid-institutes:grid.5329.d |
103 | ″ | schema:familyName | Nedjalkov |
104 | ″ | schema:givenName | Mihail |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.013462243433.84 | schema:affiliation | grid-institutes:grid.5329.d |
108 | ″ | schema:familyName | Palankovski |
109 | ″ | schema:givenName | Vassil |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462243433.84 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.01360124374.41 | schema:affiliation | grid-institutes:grid.215654.1 |
113 | ″ | schema:familyName | Vasileska |
114 | ″ | schema:givenName | Dragica |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124374.41 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.07406155655.21 | schema:affiliation | grid-institutes:grid.424859.6 |
118 | ″ | schema:familyName | Atanassov |
119 | ″ | schema:givenName | Emanouil |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406155655.21 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:grid.215654.1 | schema:alternateName | Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA |
123 | ″ | schema:name | Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.424859.6 | schema:alternateName | IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria |
126 | ″ | schema:name | IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria |
127 | ″ | rdf:type | schema:Organization |
128 | grid-institutes:grid.5329.d | schema:alternateName | Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Guβhausstraβe 27–29, A-1040 Wien, Vienna, Austria |
129 | ″ | schema:name | Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Guβhausstraβe 27–29, A-1040 Wien, Vienna, Austria |
130 | ″ | rdf:type | schema:Organization |