Ultrafast Wigner transport in quantum wires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12-09

AUTHORS

Mihail Nedjalkov, Dragica Vasileska, Emanouil Atanassov, Vassil Palankovski

ABSTRACT

Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results. More... »

PAGES

235-238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y

DOI

http://dx.doi.org/10.1007/s10825-006-0101-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045668695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasileska", 
        "givenName": "Dragica", 
        "id": "sg:person.01360124374.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124374.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atanassov", 
        "givenName": "Emanouil", 
        "id": "sg:person.07406155655.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406155655.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Gu\u03b2hausstra\u03b2e 27\u201329, A-1040 Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palankovski", 
        "givenName": "Vassil", 
        "id": "sg:person.013462243433.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462243433.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-12-09", 
    "datePublishedReg": "2006-12-09", 
    "description": "Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10825-006-0101-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036340", 
        "issn": [
          "1569-8025", 
          "1572-8137"
        ], 
        "name": "Journal of Computational Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "non-equilibrium carrier distribution", 
      "quantum kinetic model", 
      "effect of broadening", 
      "backward Monte Carlo method", 
      "quantum wires", 
      "carrier relaxation", 
      "classical trajectories", 
      "carrier distribution", 
      "dissipation process", 
      "Monte Carlo method", 
      "latter introduces", 
      "Carlo method", 
      "spatial transfer", 
      "phonons", 
      "collisions", 
      "broadening", 
      "nanowires", 
      "relaxation", 
      "transport", 
      "duration time", 
      "wire", 
      "basic differences", 
      "energy conservation", 
      "evolution", 
      "transfer", 
      "distribution", 
      "trajectories", 
      "model", 
      "simulation results", 
      "introduces", 
      "method", 
      "modification", 
      "process", 
      "effect", 
      "time", 
      "results", 
      "way", 
      "early stages", 
      "conservation", 
      "retardation", 
      "differences", 
      "stage", 
      "lack", 
      "treatment", 
      "way of treatment"
    ], 
    "name": "Ultrafast Wigner transport in quantum wires", 
    "pagination": "235-238", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045668695"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10825-006-0101-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10825-006-0101-y", 
      "https://app.dimensions.ai/details/publication/pub.1045668695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_420.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10825-006-0101-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10825-006-0101-y'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      70 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10825-006-0101-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2235c3b72fe54d5085bc37da6f983ced
4 schema:datePublished 2006-12-09
5 schema:datePublishedReg 2006-12-09
6 schema:description Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Na0d2758c79a94b7ab7e6d0d3d90004c3
11 Ne81079a2de2e496a8a143b4acb742ba5
12 sg:journal.1036340
13 schema:keywords Carlo method
14 Monte Carlo method
15 backward Monte Carlo method
16 basic differences
17 broadening
18 carrier distribution
19 carrier relaxation
20 classical trajectories
21 collisions
22 conservation
23 differences
24 dissipation process
25 distribution
26 duration time
27 early stages
28 effect
29 effect of broadening
30 energy conservation
31 evolution
32 introduces
33 lack
34 latter introduces
35 method
36 model
37 modification
38 nanowires
39 non-equilibrium carrier distribution
40 phonons
41 process
42 quantum kinetic model
43 quantum wires
44 relaxation
45 results
46 retardation
47 simulation results
48 spatial transfer
49 stage
50 time
51 trajectories
52 transfer
53 transport
54 treatment
55 way
56 way of treatment
57 wire
58 schema:name Ultrafast Wigner transport in quantum wires
59 schema:pagination 235-238
60 schema:productId N20b9d0bace8c4acfa5926c49b741ea8c
61 N2e0c13d857ee493bbae56bdf00cbe0e1
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045668695
63 https://doi.org/10.1007/s10825-006-0101-y
64 schema:sdDatePublished 2022-05-20T07:23
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N76fe49d87e1e4f31a41b9ad3c887ea6c
67 schema:url https://doi.org/10.1007/s10825-006-0101-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N20b9d0bace8c4acfa5926c49b741ea8c schema:name dimensions_id
72 schema:value pub.1045668695
73 rdf:type schema:PropertyValue
74 N2235c3b72fe54d5085bc37da6f983ced rdf:first sg:person.011142023427.48
75 rdf:rest Nfe888c2e482c4f89b32ede2e29f13800
76 N2e0c13d857ee493bbae56bdf00cbe0e1 schema:name doi
77 schema:value 10.1007/s10825-006-0101-y
78 rdf:type schema:PropertyValue
79 N6f1ea50d1e5e4c21803196de9b47990e rdf:first sg:person.07406155655.21
80 rdf:rest N895829ae1b6b40e18a984a833841262c
81 N76fe49d87e1e4f31a41b9ad3c887ea6c schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N895829ae1b6b40e18a984a833841262c rdf:first sg:person.013462243433.84
84 rdf:rest rdf:nil
85 Na0d2758c79a94b7ab7e6d0d3d90004c3 schema:volumeNumber 6
86 rdf:type schema:PublicationVolume
87 Ne81079a2de2e496a8a143b4acb742ba5 schema:issueNumber 1-3
88 rdf:type schema:PublicationIssue
89 Nfe888c2e482c4f89b32ede2e29f13800 rdf:first sg:person.01360124374.41
90 rdf:rest N6f1ea50d1e5e4c21803196de9b47990e
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1036340 schema:issn 1569-8025
98 1572-8137
99 schema:name Journal of Computational Electronics
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
103 schema:familyName Nedjalkov
104 schema:givenName Mihail
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
106 rdf:type schema:Person
107 sg:person.013462243433.84 schema:affiliation grid-institutes:grid.5329.d
108 schema:familyName Palankovski
109 schema:givenName Vassil
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462243433.84
111 rdf:type schema:Person
112 sg:person.01360124374.41 schema:affiliation grid-institutes:grid.215654.1
113 schema:familyName Vasileska
114 schema:givenName Dragica
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360124374.41
116 rdf:type schema:Person
117 sg:person.07406155655.21 schema:affiliation grid-institutes:grid.424859.6
118 schema:familyName Atanassov
119 schema:givenName Emanouil
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406155655.21
121 rdf:type schema:Person
122 grid-institutes:grid.215654.1 schema:alternateName Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA
123 schema:name Department of Electrical Engineering, Arizona State University, 85287-5706, Tempe, USA
124 rdf:type schema:Organization
125 grid-institutes:grid.424859.6 schema:alternateName IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria
126 schema:name IPP, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.25A 1113, Sofia, Bulgaria
127 rdf:type schema:Organization
128 grid-institutes:grid.5329.d schema:alternateName Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Guβhausstraβe 27–29, A-1040 Wien, Vienna, Austria
129 schema:name Advanced Material and Device Analysis Group, Institute for Microelectronics, TU Wien, Guβhausstraβe 27–29, A-1040 Wien, Vienna, Austria
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...