Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

Takeshi Ashida, Takeshi Kikuchi

ABSTRACT

Predicting an accurate binding free energy between a target protein and a ligand can be one of the most important steps in a drug discovery process. Often, many molecules must be screened to find probable high potency ones. Thus, a computational technique with low cost is highly desirable for the estimation of binding free energies of many molecules. Several techniques have thus far been developed for estimating binding free energies. Some techniques provide accurate predictions of binding free energies but high large computational cost. Other methods give good predictions but require tuning of some parameters to predict them with high accuracy. In this study, we propose a method to predict relative binding free energies with accuracy comparable to the results of prior methods but with lower computational cost and with no parameter needing to be carefully tuned. Our technique is based on the free energy variational principle. FK506 binding protein (FKBP) with 18 ligands is taken as a test system. Our results are compared to those from other widely used techniques. Our method provides a correlation coefficient (r²) of 0.80 between experimental and calculated relative binding free energies and yields an average absolute error of 0.70 kcal/mol compared to experimental values. These results are comparable to or better than results from other techniques. We also discuss the possibility to improve our method further. More... »

PAGES

479-490

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10822-013-9657-3

DOI

http://dx.doi.org/10.1007/s10822-013-9657-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052367785

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23754464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tacrolimus Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashida", 
        "givenName": "Takeshi", 
        "id": "sg:person.01215052537.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215052537.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kikuchi", 
        "givenName": "Takeshi", 
        "id": "sg:person.01155332325.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155332325.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jcc.21372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004469317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004469317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005656652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005998995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.200401120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008493062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.200401120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008493062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009346211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-987x(19961115)17:14<1587::aid-jcc1>3.0.co;2-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009629229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-987x(19991130)20:15<1604::aid-jcc2>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011733152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar000033j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar000033j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90098-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018525489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(04)74084-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018825043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.10270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023862111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.1998.10508279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023961793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0407404102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025908273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026426643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026426643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026722354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-894x(01)80135-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028046360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030751384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033216981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033501081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035427322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2009.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038069474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470125939.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039409081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040108031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040331337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-011-1065-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040855119", 
          "https://doi.org/10.1007/s00894-011-1065-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041229041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)74462-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043328444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049597473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049597473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.10128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050750985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0896(99)00015-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052931136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct049941i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct049941i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00075a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055704586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja003164o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055722774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja003164o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055722774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja003834q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055727988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja003834q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055727988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm001045d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055935132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm001045d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055935132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049081q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055948874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049081q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055948874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0135050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056047777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0135050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056047777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1740193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057802985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1999637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057835035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2221680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.464397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058042407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/68.3.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/7.3.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059981031"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Predicting an accurate binding free energy between a target protein and a ligand can be one of the most important steps in a drug discovery process. Often, many molecules must be screened to find probable high potency ones. Thus, a computational technique with low cost is highly desirable for the estimation of binding free energies of many molecules. Several techniques have thus far been developed for estimating binding free energies. Some techniques provide accurate predictions of binding free energies but high large computational cost. Other methods give good predictions but require tuning of some parameters to predict them with high accuracy. In this study, we propose a method to predict relative binding free energies with accuracy comparable to the results of prior methods but with lower computational cost and with no parameter needing to be carefully tuned. Our technique is based on the free energy variational principle. FK506 binding protein (FKBP) with 18 ligands is taken as a test system. Our results are compared to those from other widely used techniques. Our method provides a correlation coefficient (r\u00b2) of 0.80 between experimental and calculated relative binding free energies and yields an average absolute error of 0.70 kcal/mol compared to experimental values. These results are comparable to or better than results from other techniques. We also discuss the possibility to improve our method further.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10822-013-9657-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105375", 
        "issn": [
          "0928-2866", 
          "1573-9023"
        ], 
        "name": "Journal of Computer-Aided Molecular Design", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system", 
    "pagination": "479-490", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f971e1783b7607f7bb4adc8321815141b77458385f95b76b1d9cba5147def8d2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23754464"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8710425"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10822-013-9657-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052367785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10822-013-9657-3", 
      "https://app.dimensions.ai/details/publication/pub.1052367785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10822-013-9657-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10822-013-9657-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10822-013-9657-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10822-013-9657-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10822-013-9657-3'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      83 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10822-013-9657-3 schema:about N07430bf2dce4426e8a09fe7a4e3e8339
2 N3e59595b9ad246fd8e7f777563ac7a3f
3 N4e89c04005104dcabf25f7e34dd1b3b4
4 N991ce2391de64b6185ba3dce033783e1
5 N9d709440f82e48998e965182f4a6eace
6 Nb30546d3a6e34cd29b431f75bb0500ca
7 Nb7539e6fffb04c75a8f5a31f4243a169
8 Ncb2cc1a8b62d4da798c7473e0acf38dd
9 Nf6001735793c4ef6b40c5c6446ae5ee2
10 anzsrc-for:03
11 anzsrc-for:0307
12 schema:author Nbed1228e3c9e4edeb8fbc4a758fe714d
13 schema:citation sg:pub.10.1007/s00894-011-1065-9
14 https://doi.org/10.1002/(sici)1096-987x(19961115)17:14<1587::aid-jcc1>3.0.co;2-h
15 https://doi.org/10.1002/(sici)1096-987x(19991130)20:15<1604::aid-jcc2>3.0.co;2-a
16 https://doi.org/10.1002/9780470125939.ch4
17 https://doi.org/10.1002/bip.10270
18 https://doi.org/10.1002/chem.200401120
19 https://doi.org/10.1002/jcc.10128
20 https://doi.org/10.1002/jcc.1079
21 https://doi.org/10.1002/jcc.1153
22 https://doi.org/10.1002/jcc.20035
23 https://doi.org/10.1002/jcc.20857
24 https://doi.org/10.1002/jcc.21372
25 https://doi.org/10.1002/jcc.21566
26 https://doi.org/10.1002/jcc.21625
27 https://doi.org/10.1002/jcc.21758
28 https://doi.org/10.1002/prot.10558
29 https://doi.org/10.1002/prot.20443
30 https://doi.org/10.1002/prot.21044
31 https://doi.org/10.1002/prot.21123
32 https://doi.org/10.1002/prot.22687
33 https://doi.org/10.1006/jmbi.2000.3629
34 https://doi.org/10.1006/jmbi.2000.4057
35 https://doi.org/10.1016/0021-9991(77)90098-5
36 https://doi.org/10.1016/j.chemphys.2009.09.023
37 https://doi.org/10.1016/s0006-3495(03)74462-2
38 https://doi.org/10.1016/s0006-3495(04)74084-9
39 https://doi.org/10.1016/s0960-894x(01)80135-9
40 https://doi.org/10.1016/s0968-0896(99)00015-2
41 https://doi.org/10.1021/ar000033j
42 https://doi.org/10.1021/ct049941i
43 https://doi.org/10.1021/ja00075a008
44 https://doi.org/10.1021/ja003164o
45 https://doi.org/10.1021/ja003834q
46 https://doi.org/10.1021/jm001045d
47 https://doi.org/10.1021/jm049081q
48 https://doi.org/10.1021/jp0135050
49 https://doi.org/10.1063/1.1740193
50 https://doi.org/10.1063/1.1999637
51 https://doi.org/10.1063/1.2221680
52 https://doi.org/10.1063/1.445869
53 https://doi.org/10.1063/1.464397
54 https://doi.org/10.1073/pnas.0407404102
55 https://doi.org/10.1080/07391102.1998.10508279
56 https://doi.org/10.1093/biomet/68.3.589
57 https://doi.org/10.1093/protein/7.3.385
58 schema:datePublished 2013-06
59 schema:datePublishedReg 2013-06-01
60 schema:description Predicting an accurate binding free energy between a target protein and a ligand can be one of the most important steps in a drug discovery process. Often, many molecules must be screened to find probable high potency ones. Thus, a computational technique with low cost is highly desirable for the estimation of binding free energies of many molecules. Several techniques have thus far been developed for estimating binding free energies. Some techniques provide accurate predictions of binding free energies but high large computational cost. Other methods give good predictions but require tuning of some parameters to predict them with high accuracy. In this study, we propose a method to predict relative binding free energies with accuracy comparable to the results of prior methods but with lower computational cost and with no parameter needing to be carefully tuned. Our technique is based on the free energy variational principle. FK506 binding protein (FKBP) with 18 ligands is taken as a test system. Our results are compared to those from other widely used techniques. Our method provides a correlation coefficient (r²) of 0.80 between experimental and calculated relative binding free energies and yields an average absolute error of 0.70 kcal/mol compared to experimental values. These results are comparable to or better than results from other techniques. We also discuss the possibility to improve our method further.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N05ae164a4c5f4c5491793e9070c6c345
65 Nc9f817d26dae440ab6897f5d69d3f79a
66 sg:journal.1105375
67 schema:name Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system
68 schema:pagination 479-490
69 schema:productId N48c2d7eeb9534fc5894a42bd4aa33946
70 N61bca442153c4c97923c911ddf99d696
71 Nd2bbee585429486b9a115e9bec8302ae
72 Nec1d4e53baf8476983d3aa1baddcf700
73 Nf6027366f7874a61ab0385772f5302cd
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052367785
75 https://doi.org/10.1007/s10822-013-9657-3
76 schema:sdDatePublished 2019-04-11T01:55
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nf380af5933b94b38a62c690f05220f9e
79 schema:url http://link.springer.com/10.1007/s10822-013-9657-3
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N05ae164a4c5f4c5491793e9070c6c345 schema:volumeNumber 27
84 rdf:type schema:PublicationVolume
85 N07430bf2dce4426e8a09fe7a4e3e8339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Protein Binding
87 rdf:type schema:DefinedTerm
88 N3e59595b9ad246fd8e7f777563ac7a3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Crystallography, X-Ray
90 rdf:type schema:DefinedTerm
91 N48c2d7eeb9534fc5894a42bd4aa33946 schema:name dimensions_id
92 schema:value pub.1052367785
93 rdf:type schema:PropertyValue
94 N4e89c04005104dcabf25f7e34dd1b3b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Thermodynamics
96 rdf:type schema:DefinedTerm
97 N61bca442153c4c97923c911ddf99d696 schema:name doi
98 schema:value 10.1007/s10822-013-9657-3
99 rdf:type schema:PropertyValue
100 N991ce2391de64b6185ba3dce033783e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Computer Simulation
102 rdf:type schema:DefinedTerm
103 N9d709440f82e48998e965182f4a6eace schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Tacrolimus Binding Proteins
105 rdf:type schema:DefinedTerm
106 Nb30546d3a6e34cd29b431f75bb0500ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Molecular
108 rdf:type schema:DefinedTerm
109 Nb7539e6fffb04c75a8f5a31f4243a169 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Protein Conformation
111 rdf:type schema:DefinedTerm
112 Nbed1228e3c9e4edeb8fbc4a758fe714d rdf:first sg:person.01215052537.46
113 rdf:rest Ne8817558ccb24718b5b194eb8cd463a5
114 Nc9f817d26dae440ab6897f5d69d3f79a schema:issueNumber 6
115 rdf:type schema:PublicationIssue
116 Ncb2cc1a8b62d4da798c7473e0acf38dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Binding Sites
118 rdf:type schema:DefinedTerm
119 Nd2bbee585429486b9a115e9bec8302ae schema:name pubmed_id
120 schema:value 23754464
121 rdf:type schema:PropertyValue
122 Ne8817558ccb24718b5b194eb8cd463a5 rdf:first sg:person.01155332325.16
123 rdf:rest rdf:nil
124 Nec1d4e53baf8476983d3aa1baddcf700 schema:name readcube_id
125 schema:value f971e1783b7607f7bb4adc8321815141b77458385f95b76b1d9cba5147def8d2
126 rdf:type schema:PropertyValue
127 Nf380af5933b94b38a62c690f05220f9e schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nf6001735793c4ef6b40c5c6446ae5ee2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Ligands
131 rdf:type schema:DefinedTerm
132 Nf6027366f7874a61ab0385772f5302cd schema:name nlm_unique_id
133 schema:value 8710425
134 rdf:type schema:PropertyValue
135 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
136 schema:name Chemical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
139 schema:name Theoretical and Computational Chemistry
140 rdf:type schema:DefinedTerm
141 sg:journal.1105375 schema:issn 0928-2866
142 1573-9023
143 schema:name Journal of Computer-Aided Molecular Design
144 rdf:type schema:Periodical
145 sg:person.01155332325.16 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
146 schema:familyName Kikuchi
147 schema:givenName Takeshi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155332325.16
149 rdf:type schema:Person
150 sg:person.01215052537.46 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
151 schema:familyName Ashida
152 schema:givenName Takeshi
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215052537.46
154 rdf:type schema:Person
155 sg:pub.10.1007/s00894-011-1065-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040855119
156 https://doi.org/10.1007/s00894-011-1065-9
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/(sici)1096-987x(19961115)17:14<1587::aid-jcc1>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629229
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/(sici)1096-987x(19991130)20:15<1604::aid-jcc2>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011733152
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/9780470125939.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039409081
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/bip.10270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862111
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/chem.200401120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008493062
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jcc.10128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050750985
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jcc.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030751384
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/jcc.1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026722354
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/jcc.20035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501081
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/jcc.20857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005656652
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/jcc.21372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004469317
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/jcc.21566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026426643
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/jcc.21625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009346211
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/jcc.21758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015286074
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/prot.10558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041229041
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/prot.20443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035427322
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/prot.21044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040331337
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/prot.21123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033216981
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/prot.22687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049597473
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1006/jmbi.2000.3629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005998995
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1006/jmbi.2000.4057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040108031
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0021-9991(77)90098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018525489
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.chemphys.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038069474
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0006-3495(03)74462-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043328444
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0006-3495(04)74084-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018825043
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0960-894x(01)80135-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028046360
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0968-0896(99)00015-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931136
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/ar000033j schema:sameAs https://app.dimensions.ai/details/publication/pub.1017409579
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/ct049941i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055423209
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/ja00075a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055704586
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/ja003164o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055722774
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/ja003834q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055727988
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/jm001045d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055935132
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/jm049081q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055948874
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/jp0135050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056047777
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.1740193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802985
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1063/1.1999637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835035
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.2221680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848823
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1063/1.445869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023889
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1063/1.464397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058042407
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.0407404102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025908273
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1080/07391102.1998.10508279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023961793
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/biomet/68.3.589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419109
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/protein/7.3.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981031
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.262576.2 schema:alternateName Ritsumeikan University
247 schema:name Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...