Structural models in the assessment of protein druggability based on HTS data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

Anvita Gupta, Arun Kumar Gupta, Kothandaraman Seshadri

ABSTRACT

Insights on the potential of target proteins to bind small molecules with high affinity can be derived from the knowledge of their three-dimensional structural details especially of their binding pockets. The present study uses high-throughput screening (HTS) results on various targets, to obtain mathematical predictive models in which a minimal set of structural parameters significantly contributing to the hit rates or the affinity of the protein binding pockets for small molecular entities, is identified. An emphasis is given to focus on target variation aspect of the data by consideration of commonly tested compounds against the HTS targets. We identify 'four-parameter' models with R (2), [Formula: see text], SEE, and LOO q (2) values of 0.70, 0.60, 0.27 and 0.50, respectively, or better. We demonstrate through cross-validation exercises that our regression models apply well on varied data sets. Thus we can use these models to estimate hit rates for HTS campaigns and thereby assign priority to drug targets before they undergo such resource intense experimental screening and follow-up. More... »

PAGES

583-592

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10822-009-9279-y

DOI

http://dx.doi.org/10.1007/s10822-009-9279-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024619168

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19479324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer-Aided Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Screening Assays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Small Molecule Libraries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AstraZeneca (India)", 
          "id": "https://www.grid.ac/institutes/grid.459399.b", 
          "name": [
            "AstraZeneca India Private Limited, Avishkar Building, Kirloskar Business Park, Bellary Road, Hebbal, 560024, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Anvita", 
        "id": "sg:person.01172267325.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172267325.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AstraZeneca (India)", 
          "id": "https://www.grid.ac/institutes/grid.459399.b", 
          "name": [
            "AstraZeneca India Private Limited, Avishkar Building, Kirloskar Business Park, Bellary Road, Hebbal, 560024, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Arun Kumar", 
        "id": "sg:person.01164244124.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164244124.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AstraZeneca (India)", 
          "id": "https://www.grid.ac/institutes/grid.459399.b", 
          "name": [
            "AstraZeneca India Private Limited, Avishkar Building, Kirloskar Business Park, Bellary Road, Hebbal, 560024, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seshadri", 
        "givenName": "Kothandaraman", 
        "id": "sg:person.01300472524.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300472524.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkj017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000810337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-409x(00)00129-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006677292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008520193", 
          "https://doi.org/10.1038/nrd987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008520193", 
          "https://doi.org/10.1038/nrd987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-7855(93)87010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009554044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011224536", 
          "https://doi.org/10.1038/nrd2606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012674250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527615452.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016043766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838186", 
          "https://doi.org/10.1038/nrd2199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838186", 
          "https://doi.org/10.1038/nrd2199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019548326", 
          "https://doi.org/10.1038/nbt1273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019548326", 
          "https://doi.org/10.1038/nbt1273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020208300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(04)03069-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021267228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022214012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025510312", 
          "https://doi.org/10.1038/nrd2205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025510312", 
          "https://doi.org/10.1038/nrd2205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2006.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027164677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232203", 
          "https://doi.org/10.1038/nrd941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232203", 
          "https://doi.org/10.1038/nrd941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2007.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032706888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2007.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032706888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(05)03386-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033424203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1056-8719(00)00107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036545299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041403273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.18.9997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041778876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007999920146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043862583", 
          "https://doi.org/10.1023/a:1007999920146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045899264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046818756", 
          "https://doi.org/10.1038/nrd892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046818756", 
          "https://doi.org/10.1038/nrd892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.bjp.0707373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050273664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(05)03498-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051293184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049131r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055948902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049131r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055948902"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "Insights on the potential of target proteins to bind small molecules with high affinity can be derived from the knowledge of their three-dimensional structural details especially of their binding pockets. The present study uses high-throughput screening (HTS) results on various targets, to obtain mathematical predictive models in which a minimal set of structural parameters significantly contributing to the hit rates or the affinity of the protein binding pockets for small molecular entities, is identified. An emphasis is given to focus on target variation aspect of the data by consideration of commonly tested compounds against the HTS targets. We identify 'four-parameter' models with R (2), [Formula: see text], SEE, and LOO q (2) values of 0.70, 0.60, 0.27 and 0.50, respectively, or better. We demonstrate through cross-validation exercises that our regression models apply well on varied data sets. Thus we can use these models to estimate hit rates for HTS campaigns and thereby assign priority to drug targets before they undergo such resource intense experimental screening and follow-up.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10822-009-9279-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105375", 
        "issn": [
          "0928-2866", 
          "1573-9023"
        ], 
        "name": "Journal of Computer-Aided Molecular Design", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Structural models in the assessment of protein druggability based on HTS data", 
    "pagination": "583-592", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10822-009-9279-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "754958e9300fd8a9b9c6284800636baa5102917ffe1ffc7f6c683de5fc5bbdbc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024619168"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8710425"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19479324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10822-009-9279-y", 
      "https://app.dimensions.ai/details/publication/pub.1024619168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10822-009-9279-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10822-009-9279-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10822-009-9279-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10822-009-9279-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10822-009-9279-y'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10822-009-9279-y schema:about N0305ce5ac79c4e0fac995c34145b84eb
2 N033e61b08b8943f9800be729bdc21ede
3 N0dfca09e5e73433884f9369f2bb53559
4 N4146e81e34784930ad7bd4e48776a205
5 N4fbe1b34563148dc97c084118e66d5da
6 N5c0a6d88a53a4b79af28da1fa616187b
7 N620468084a2343e39d420bd9da9260d6
8 N81eccc5eab6449e29abb895b7973c2f6
9 N9f327362b06648a782781defdec2afd0
10 Naa092766c14444a987152f8e410ee6a0
11 Nc7de1cdded6840548c4b5b749d72e156
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author N653d7a4bccd244c68085b66ecf38e147
15 schema:citation sg:pub.10.1023/a:1007999920146
16 sg:pub.10.1038/nbt1273
17 sg:pub.10.1038/nrd2199
18 sg:pub.10.1038/nrd2205
19 sg:pub.10.1038/nrd2606
20 sg:pub.10.1038/nrd892
21 sg:pub.10.1038/nrd941
22 sg:pub.10.1038/nrd987
23 https://doi.org/10.1002/9783527615452.ch5
24 https://doi.org/10.1002/jcc.20290
25 https://doi.org/10.1002/prot.20088
26 https://doi.org/10.1002/prot.20897
27 https://doi.org/10.1016/0263-7855(93)87010-3
28 https://doi.org/10.1016/j.cbpa.2006.06.022
29 https://doi.org/10.1016/j.drudis.2007.02.015
30 https://doi.org/10.1016/s0169-409x(00)00129-0
31 https://doi.org/10.1016/s1056-8719(00)00107-6
32 https://doi.org/10.1016/s1359-6446(04)03069-7
33 https://doi.org/10.1016/s1359-6446(05)03386-6
34 https://doi.org/10.1016/s1359-6446(05)03498-7
35 https://doi.org/10.1021/jm049131r
36 https://doi.org/10.1038/sj.bjp.0707373
37 https://doi.org/10.1073/pnas.96.18.9997
38 https://doi.org/10.1093/bioinformatics/btg243
39 https://doi.org/10.1093/nar/gkj017
40 https://doi.org/10.1093/nar/gkl999
41 https://doi.org/10.1371/journal.pcbi.1000136
42 schema:datePublished 2009-08
43 schema:datePublishedReg 2009-08-01
44 schema:description Insights on the potential of target proteins to bind small molecules with high affinity can be derived from the knowledge of their three-dimensional structural details especially of their binding pockets. The present study uses high-throughput screening (HTS) results on various targets, to obtain mathematical predictive models in which a minimal set of structural parameters significantly contributing to the hit rates or the affinity of the protein binding pockets for small molecular entities, is identified. An emphasis is given to focus on target variation aspect of the data by consideration of commonly tested compounds against the HTS targets. We identify 'four-parameter' models with R (2), [Formula: see text], SEE, and LOO q (2) values of 0.70, 0.60, 0.27 and 0.50, respectively, or better. We demonstrate through cross-validation exercises that our regression models apply well on varied data sets. Thus we can use these models to estimate hit rates for HTS campaigns and thereby assign priority to drug targets before they undergo such resource intense experimental screening and follow-up.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Nb8c313ad664547148864f89ce4617071
49 Nb9916d3282a34d0889bc8e7467cf1144
50 sg:journal.1105375
51 schema:name Structural models in the assessment of protein druggability based on HTS data
52 schema:pagination 583-592
53 schema:productId N2d9d112247ea49d0baf50805bc49ece5
54 N58d40deec7004bb6a3396941a05771f9
55 N60757e3eb2d14f288c44001fe0f64f3c
56 N72a83eb9fe444f86b6d3ca404a44a0ad
57 Nf8da4a57c72f43629a639f365e6eb581
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024619168
59 https://doi.org/10.1007/s10822-009-9279-y
60 schema:sdDatePublished 2019-04-15T09:23
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N3629109399fb4849a292c5dcd5cf3497
63 schema:url http://link.springer.com/10.1007/s10822-009-9279-y
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0305ce5ac79c4e0fac995c34145b84eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Magnetic Resonance Spectroscopy
69 rdf:type schema:DefinedTerm
70 N033e61b08b8943f9800be729bdc21ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Ligands
72 rdf:type schema:DefinedTerm
73 N0dfca09e5e73433884f9369f2bb53559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Molecular Conformation
75 rdf:type schema:DefinedTerm
76 N2d9d112247ea49d0baf50805bc49ece5 schema:name doi
77 schema:value 10.1007/s10822-009-9279-y
78 rdf:type schema:PropertyValue
79 N314595326d0f41e9811d1e82ddee8b61 rdf:first sg:person.01164244124.19
80 rdf:rest Na7cd4fd2c07f44748be8f90682941851
81 N3629109399fb4849a292c5dcd5cf3497 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N4146e81e34784930ad7bd4e48776a205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N4fbe1b34563148dc97c084118e66d5da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Software
88 rdf:type schema:DefinedTerm
89 N58d40deec7004bb6a3396941a05771f9 schema:name pubmed_id
90 schema:value 19479324
91 rdf:type schema:PropertyValue
92 N5c0a6d88a53a4b79af28da1fa616187b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Protein Binding
94 rdf:type schema:DefinedTerm
95 N60757e3eb2d14f288c44001fe0f64f3c schema:name readcube_id
96 schema:value 754958e9300fd8a9b9c6284800636baa5102917ffe1ffc7f6c683de5fc5bbdbc
97 rdf:type schema:PropertyValue
98 N620468084a2343e39d420bd9da9260d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Quantitative Structure-Activity Relationship
100 rdf:type schema:DefinedTerm
101 N653d7a4bccd244c68085b66ecf38e147 rdf:first sg:person.01172267325.84
102 rdf:rest N314595326d0f41e9811d1e82ddee8b61
103 N72a83eb9fe444f86b6d3ca404a44a0ad schema:name dimensions_id
104 schema:value pub.1024619168
105 rdf:type schema:PropertyValue
106 N81eccc5eab6449e29abb895b7973c2f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computer-Aided Design
108 rdf:type schema:DefinedTerm
109 N9f327362b06648a782781defdec2afd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Drug Discovery
111 rdf:type schema:DefinedTerm
112 Na7cd4fd2c07f44748be8f90682941851 rdf:first sg:person.01300472524.49
113 rdf:rest rdf:nil
114 Naa092766c14444a987152f8e410ee6a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Small Molecule Libraries
116 rdf:type schema:DefinedTerm
117 Nb8c313ad664547148864f89ce4617071 schema:issueNumber 8
118 rdf:type schema:PublicationIssue
119 Nb9916d3282a34d0889bc8e7467cf1144 schema:volumeNumber 23
120 rdf:type schema:PublicationVolume
121 Nc7de1cdded6840548c4b5b749d72e156 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name High-Throughput Screening Assays
123 rdf:type schema:DefinedTerm
124 Nf8da4a57c72f43629a639f365e6eb581 schema:name nlm_unique_id
125 schema:value 8710425
126 rdf:type schema:PropertyValue
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biochemistry and Cell Biology
132 rdf:type schema:DefinedTerm
133 sg:journal.1105375 schema:issn 0928-2866
134 1573-9023
135 schema:name Journal of Computer-Aided Molecular Design
136 rdf:type schema:Periodical
137 sg:person.01164244124.19 schema:affiliation https://www.grid.ac/institutes/grid.459399.b
138 schema:familyName Gupta
139 schema:givenName Arun Kumar
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164244124.19
141 rdf:type schema:Person
142 sg:person.01172267325.84 schema:affiliation https://www.grid.ac/institutes/grid.459399.b
143 schema:familyName Gupta
144 schema:givenName Anvita
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172267325.84
146 rdf:type schema:Person
147 sg:person.01300472524.49 schema:affiliation https://www.grid.ac/institutes/grid.459399.b
148 schema:familyName Seshadri
149 schema:givenName Kothandaraman
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300472524.49
151 rdf:type schema:Person
152 sg:pub.10.1023/a:1007999920146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043862583
153 https://doi.org/10.1023/a:1007999920146
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nbt1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019548326
156 https://doi.org/10.1038/nbt1273
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nrd2199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016838186
159 https://doi.org/10.1038/nrd2199
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nrd2205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025510312
162 https://doi.org/10.1038/nrd2205
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nrd2606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011224536
165 https://doi.org/10.1038/nrd2606
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nrd892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046818756
168 https://doi.org/10.1038/nrd892
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nrd941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232203
171 https://doi.org/10.1038/nrd941
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nrd987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008520193
174 https://doi.org/10.1038/nrd987
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/9783527615452.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016043766
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/jcc.20290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012674250
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/prot.20088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208300
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/prot.20897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036059787
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0263-7855(93)87010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009554044
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.cbpa.2006.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027164677
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.drudis.2007.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032706888
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0169-409x(00)00129-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006677292
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s1056-8719(00)00107-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036545299
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1359-6446(04)03069-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021267228
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s1359-6446(05)03386-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033424203
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s1359-6446(05)03498-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051293184
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/jm049131r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055948902
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1038/sj.bjp.0707373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050273664
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1073/pnas.96.18.9997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041778876
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/btg243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022214012
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/gkj017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000810337
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/gkl999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045899264
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pcbi.1000136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041403273
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.459399.b schema:alternateName AstraZeneca (India)
215 schema:name AstraZeneca India Private Limited, Avishkar Building, Kirloskar Business Park, Bellary Road, Hebbal, 560024, Bangalore, India
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...