Fluorescence Quenching of Dyes by Graphene Oxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

V. A. Povedailo, B. V. Ronishenko, V. I. Stepuro, D. A. Tsybulsky, V. V. Shmanai, D. L. Yakovlev

ABSTRACT

Fluorescence quenching of four dyes [acridine orange (AO), rhodamine B (Rd B), rhodamine 110 (Rd 110), and rhodamine 640 (Rd 640)] by colloidal graphene oxide (GO) in phosphate buffer (pH 6.0) was studied. Dynamic and static quenching were analyzed using the Stern–Volmer equation. Static quenching by graphene oxide was observed for AO, Rd 640, and Rd B whereas mixed dynamic and static quenching was characteristic of Rd 110. The Stern–Volmer constant of dynamic quenching was 10 times less than that of static quenching. The measured association constants of the dyes with GO fell in the order 2540 (AO) > 495 (Rd 640) > 260 (Rd 110) > 144 L/g (Rd B). The value of the π–π-stacking interaction was strongly influenced by the phthalic fragment oriented perpendicular to the xanthene in the rhodamine dyes and the four alkyl groups of Rd B as a result of their torsional vibrations and rotational motions. More... »

PAGES

605-610

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10812-018-0693-6

DOI

http://dx.doi.org/10.1007/s10812-018-0693-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107105813


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "BI Stepanov Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.426545.4", 
          "name": [
            "B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimost\u2032 Ave., 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Povedailo", 
        "givenName": "V. A.", 
        "id": "sg:person.07522503641.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522503641.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronishenko", 
        "givenName": "B. V.", 
        "id": "sg:person.012462534013.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462534013.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepuro", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsybulsky", 
        "givenName": "D. A.", 
        "id": "sg:person.0672736427.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672736427.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical and Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435325.6", 
          "name": [
            "Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shmanai", 
        "givenName": "V. V.", 
        "id": "sg:person.0656057035.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656057035.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BI Stepanov Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.426545.4", 
          "name": [
            "B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimost\u2032 Ave., 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovlev", 
        "givenName": "D. L.", 
        "id": "sg:person.014100067442.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100067442.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1590/s1984-82502013000400002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la801744a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la801744a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0348068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019754774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0348068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019754774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2013.04.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023062823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp07455c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028229571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2015.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028458647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.199707701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042821294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.186802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051096804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.186802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051096804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am302704a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055143032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la204023w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056155358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.205439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.205439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.003324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065113246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cp00520b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085907263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cp05799g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092333271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cp05305c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092656615"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Fluorescence quenching of four dyes [acridine orange (AO), rhodamine B (Rd B), rhodamine 110 (Rd 110), and rhodamine 640 (Rd 640)] by colloidal graphene oxide (GO) in phosphate buffer (pH 6.0) was studied. Dynamic and static quenching were analyzed using the Stern\u2013Volmer equation. Static quenching by graphene oxide was observed for AO, Rd 640, and Rd B whereas mixed dynamic and static quenching was characteristic of Rd 110. The Stern\u2013Volmer constant of dynamic quenching was 10 times less than that of static quenching. The measured association constants of the dyes with GO fell in the order 2540 (AO) > 495 (Rd 640) > 260 (Rd 110) > 144 L/g (Rd B). The value of the \u03c0\u2013\u03c0-stacking interaction was strongly influenced by the phthalic fragment oriented perpendicular to the xanthene in the rhodamine dyes and the four alkyl groups of Rd B as a result of their torsional vibrations and rotational motions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10812-018-0693-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005931", 
        "issn": [
          "0021-9037", 
          "1573-8647"
        ], 
        "name": "Journal of Applied Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "Fluorescence Quenching of Dyes by Graphene Oxide", 
    "pagination": "605-610", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c383228fd6893fd453085670a884eb156205ac3c3f8c997763fd371198cc0100"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10812-018-0693-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107105813"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10812-018-0693-6", 
      "https://app.dimensions.ai/details/publication/pub.1107105813"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000544.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10812-018-0693-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10812-018-0693-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10812-018-0693-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10812-018-0693-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10812-018-0693-6'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10812-018-0693-6 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N8e8a33d822cf4517802fa92ceb3fc74f
4 schema:citation https://doi.org/10.1002/anie.199707701
5 https://doi.org/10.1016/j.matchemphys.2015.01.005
6 https://doi.org/10.1016/j.saa.2013.04.066
7 https://doi.org/10.1021/am302704a
8 https://doi.org/10.1021/jp0348068
9 https://doi.org/10.1021/la204023w
10 https://doi.org/10.1021/la801744a
11 https://doi.org/10.1039/c6cp07455c
12 https://doi.org/10.1039/c7cp00520b
13 https://doi.org/10.1039/c7cp05305c
14 https://doi.org/10.1039/c7cp05799g
15 https://doi.org/10.1103/physrevb.94.205439
16 https://doi.org/10.1103/physrevlett.103.186802
17 https://doi.org/10.1364/ao.37.003324
18 https://doi.org/10.1590/s1984-82502013000400002
19 schema:datePublished 2018-09
20 schema:datePublishedReg 2018-09-01
21 schema:description Fluorescence quenching of four dyes [acridine orange (AO), rhodamine B (Rd B), rhodamine 110 (Rd 110), and rhodamine 640 (Rd 640)] by colloidal graphene oxide (GO) in phosphate buffer (pH 6.0) was studied. Dynamic and static quenching were analyzed using the Stern–Volmer equation. Static quenching by graphene oxide was observed for AO, Rd 640, and Rd B whereas mixed dynamic and static quenching was characteristic of Rd 110. The Stern–Volmer constant of dynamic quenching was 10 times less than that of static quenching. The measured association constants of the dyes with GO fell in the order 2540 (AO) > 495 (Rd 640) > 260 (Rd 110) > 144 L/g (Rd B). The value of the π–π-stacking interaction was strongly influenced by the phthalic fragment oriented perpendicular to the xanthene in the rhodamine dyes and the four alkyl groups of Rd B as a result of their torsional vibrations and rotational motions.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N7381192de1cb438480117d076be818de
26 Nbe084ceca3fe487f899383bf4e6f4312
27 sg:journal.1005931
28 schema:name Fluorescence Quenching of Dyes by Graphene Oxide
29 schema:pagination 605-610
30 schema:productId N7ee20da453c34a53a4f855743bbf1a11
31 N8ab7afeab8644419bc33a4ee5b3de2d7
32 Nec1333ccb1984b15be0a430c5ea115b6
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107105813
34 https://doi.org/10.1007/s10812-018-0693-6
35 schema:sdDatePublished 2019-04-11T02:18
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N9a3f359ba805436d8999d3631e7a0613
38 schema:url https://link.springer.com/10.1007%2Fs10812-018-0693-6
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N14ff0d3b5c654c398564d8bd999f254f rdf:first sg:person.014100067442.38
43 rdf:rest rdf:nil
44 N60499ab5741e43c9a2e2b48605cfb9a3 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
45 schema:familyName Stepuro
46 schema:givenName V. I.
47 rdf:type schema:Person
48 N7381192de1cb438480117d076be818de schema:issueNumber 4
49 rdf:type schema:PublicationIssue
50 N7ee20da453c34a53a4f855743bbf1a11 schema:name readcube_id
51 schema:value c383228fd6893fd453085670a884eb156205ac3c3f8c997763fd371198cc0100
52 rdf:type schema:PropertyValue
53 N8ab7afeab8644419bc33a4ee5b3de2d7 schema:name dimensions_id
54 schema:value pub.1107105813
55 rdf:type schema:PropertyValue
56 N8e8a33d822cf4517802fa92ceb3fc74f rdf:first sg:person.07522503641.48
57 rdf:rest Na5aa31837aee4bbe9978bb7b3faeba5e
58 N9a3f359ba805436d8999d3631e7a0613 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Na5004d53d4dd412c993afa062a5b77f6 rdf:first N60499ab5741e43c9a2e2b48605cfb9a3
61 rdf:rest Ndfc1e84a70ff470298803731c3b9951c
62 Na5aa31837aee4bbe9978bb7b3faeba5e rdf:first sg:person.012462534013.67
63 rdf:rest Na5004d53d4dd412c993afa062a5b77f6
64 Nbe084ceca3fe487f899383bf4e6f4312 schema:volumeNumber 85
65 rdf:type schema:PublicationVolume
66 Ndcb0f38b835f48cca5a392ff0b05a981 rdf:first sg:person.0656057035.12
67 rdf:rest N14ff0d3b5c654c398564d8bd999f254f
68 Ndfc1e84a70ff470298803731c3b9951c rdf:first sg:person.0672736427.17
69 rdf:rest Ndcb0f38b835f48cca5a392ff0b05a981
70 Nec1333ccb1984b15be0a430c5ea115b6 schema:name doi
71 schema:value 10.1007/s10812-018-0693-6
72 rdf:type schema:PropertyValue
73 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
74 schema:name Technology
75 rdf:type schema:DefinedTerm
76 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
77 schema:name Nanotechnology
78 rdf:type schema:DefinedTerm
79 sg:journal.1005931 schema:issn 0021-9037
80 1573-8647
81 schema:name Journal of Applied Spectroscopy
82 rdf:type schema:Periodical
83 sg:person.012462534013.67 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
84 schema:familyName Ronishenko
85 schema:givenName B. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462534013.67
87 rdf:type schema:Person
88 sg:person.014100067442.38 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
89 schema:familyName Yakovlev
90 schema:givenName D. L.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100067442.38
92 rdf:type schema:Person
93 sg:person.0656057035.12 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
94 schema:familyName Shmanai
95 schema:givenName V. V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656057035.12
97 rdf:type schema:Person
98 sg:person.0672736427.17 schema:affiliation https://www.grid.ac/institutes/grid.435325.6
99 schema:familyName Tsybulsky
100 schema:givenName D. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672736427.17
102 rdf:type schema:Person
103 sg:person.07522503641.48 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
104 schema:familyName Povedailo
105 schema:givenName V. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522503641.48
107 rdf:type schema:Person
108 https://doi.org/10.1002/anie.199707701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042821294
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.matchemphys.2015.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028458647
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.saa.2013.04.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023062823
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/am302704a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055143032
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/jp0348068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019754774
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/la204023w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056155358
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/la801744a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142774
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1039/c6cp07455c schema:sameAs https://app.dimensions.ai/details/publication/pub.1028229571
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1039/c7cp00520b schema:sameAs https://app.dimensions.ai/details/publication/pub.1085907263
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1039/c7cp05305c schema:sameAs https://app.dimensions.ai/details/publication/pub.1092656615
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1039/c7cp05799g schema:sameAs https://app.dimensions.ai/details/publication/pub.1092333271
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.94.205439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060653282
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.103.186802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051096804
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1364/ao.37.003324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065113246
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1590/s1984-82502013000400002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008909975
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.426545.4 schema:alternateName BI Stepanov Institute of Physics
139 schema:name B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimost′ Ave., 220072, Minsk, Belarus
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.435325.6 schema:alternateName Institute of Physical and Organic Chemistry
142 schema:name Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
145 schema:name Yanka Kupala State University of Grodno, Grodno, Belarus
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...