Determination of 0–0-Transition Frequencies from Diffuse Vibronic Spectra View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

V. A. Tolkachev

ABSTRACT

The equality of the probabilities of direct and inverse vibronic transitions between the initial and final elementary quantum Franck–Condon states in the adiabatic approximation is taken as the equality of the probabilities of one electronic transition in which only the initial and final elementary vibrational ensembles exchange places. The transition frequencies will have mirror symmetry with respect to the 0–0-transition frequency ν0. Accounting for this and selecting hot molecules in the anti-Stokes regions with the initial state in thermal equilibrium leads to a restoration of the known relation for the transition cross sections σ(ν) in the form [σ(ν)/ν] exp (±hν/2kT) = 𝜑[(ν – ν0)2], where ″+″ denotes emission; ″–″, absorption. Examples of using the relation to determine ν0 from absorption, fluorescence, and phosphorescence spectra are given and compared with ν0 obtained by jet-cooling. More... »

PAGES

668-673

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10812-017-0527-y

DOI

http://dx.doi.org/10.1007/s10812-017-0527-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091911864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "BI Stepanov Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.426545.4", 
          "name": [
            "B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimost\u2032 Ave, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolkachev", 
        "givenName": "V. A.", 
        "id": "sg:person.015253632206.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253632206.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2313(83)90030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002973456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2313(83)90030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002973456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00899574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004044785", 
          "https://doi.org/10.1007/bf00899574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/bcsj.55.3422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023691425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-0104(76)87103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028351750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00884220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036190016", 
          "https://doi.org/10.1007/bf00884220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac200375070975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037325148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac198052122621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040154357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01011a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055760988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.11.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.11.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.28.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.28.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.28.684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.28.684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444584"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "The equality of the probabilities of direct and inverse vibronic transitions between the initial and final elementary quantum Franck\u2013Condon states in the adiabatic approximation is taken as the equality of the probabilities of one electronic transition in which only the initial and final elementary vibrational ensembles exchange places. The transition frequencies will have mirror symmetry with respect to the 0\u20130-transition frequency \u03bd0. Accounting for this and selecting hot molecules in the anti-Stokes regions with the initial state in thermal equilibrium leads to a restoration of the known relation for the transition cross sections \u03c3(\u03bd) in the form [\u03c3(\u03bd)/\u03bd] exp (\u00b1h\u03bd/2kT) = \ud835\udf11[(\u03bd \u2013 \u03bd0)2], where \u2033+\u2033 denotes emission; \u2033\u2013\u2033, absorption. Examples of using the relation to determine \u03bd0 from absorption, fluorescence, and phosphorescence spectra are given and compared with \u03bd0 obtained by jet-cooling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10812-017-0527-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005931", 
        "issn": [
          "0021-9037", 
          "1573-8647"
        ], 
        "name": "Journal of Applied Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "name": "Determination of 0\u20130-Transition Frequencies from Diffuse Vibronic Spectra", 
    "pagination": "668-673", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "702d34ca4334b1dbe1b20d83ab5225b4941aab649eea1677218b8467f1a15023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10812-017-0527-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091911864"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10812-017-0527-y", 
      "https://app.dimensions.ai/details/publication/pub.1091911864"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000538.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10812-017-0527-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10812-017-0527-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10812-017-0527-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10812-017-0527-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10812-017-0527-y'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10812-017-0527-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0d9e46e9341f41beb2c13afdfa422b18
4 schema:citation sg:pub.10.1007/bf00884220
5 sg:pub.10.1007/bf00899574
6 https://doi.org/10.1016/0022-2313(83)90030-3
7 https://doi.org/10.1016/0301-0104(76)87103-0
8 https://doi.org/10.1021/ja01011a008
9 https://doi.org/10.1103/physrev.11.29
10 https://doi.org/10.1103/physrev.28.672
11 https://doi.org/10.1103/physrev.28.684
12 https://doi.org/10.1246/bcsj.55.3422
13 https://doi.org/10.1351/pac198052122621
14 https://doi.org/10.1351/pac200375070975
15 schema:datePublished 2017-09
16 schema:datePublishedReg 2017-09-01
17 schema:description The equality of the probabilities of direct and inverse vibronic transitions between the initial and final elementary quantum Franck–Condon states in the adiabatic approximation is taken as the equality of the probabilities of one electronic transition in which only the initial and final elementary vibrational ensembles exchange places. The transition frequencies will have mirror symmetry with respect to the 0–0-transition frequency ν0. Accounting for this and selecting hot molecules in the anti-Stokes regions with the initial state in thermal equilibrium leads to a restoration of the known relation for the transition cross sections σ(ν) in the form [σ(ν)/ν] exp (±hν/2kT) = 𝜑[(ν – ν0)2], where ″+″ denotes emission; ″–″, absorption. Examples of using the relation to determine ν0 from absorption, fluorescence, and phosphorescence spectra are given and compared with ν0 obtained by jet-cooling.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nc8d2d731d15745629dfc891d2773e2a3
22 Ncaf5166f87e64688b22b05caec318242
23 sg:journal.1005931
24 schema:name Determination of 0–0-Transition Frequencies from Diffuse Vibronic Spectra
25 schema:pagination 668-673
26 schema:productId N0f6186622639499e860b6acd6d24323e
27 N67a42e1f42424abfa36403f79e146059
28 N87a23801043b434d8c445296324bde05
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911864
30 https://doi.org/10.1007/s10812-017-0527-y
31 schema:sdDatePublished 2019-04-10T20:02
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nc4c3f2f30a6540d7b2ae475bac699c29
34 schema:url http://link.springer.com/10.1007%2Fs10812-017-0527-y
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0d9e46e9341f41beb2c13afdfa422b18 rdf:first sg:person.015253632206.54
39 rdf:rest rdf:nil
40 N0f6186622639499e860b6acd6d24323e schema:name dimensions_id
41 schema:value pub.1091911864
42 rdf:type schema:PropertyValue
43 N67a42e1f42424abfa36403f79e146059 schema:name doi
44 schema:value 10.1007/s10812-017-0527-y
45 rdf:type schema:PropertyValue
46 N87a23801043b434d8c445296324bde05 schema:name readcube_id
47 schema:value 702d34ca4334b1dbe1b20d83ab5225b4941aab649eea1677218b8467f1a15023
48 rdf:type schema:PropertyValue
49 Nc4c3f2f30a6540d7b2ae475bac699c29 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nc8d2d731d15745629dfc891d2773e2a3 schema:volumeNumber 84
52 rdf:type schema:PublicationVolume
53 Ncaf5166f87e64688b22b05caec318242 schema:issueNumber 4
54 rdf:type schema:PublicationIssue
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
59 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
60 rdf:type schema:DefinedTerm
61 sg:journal.1005931 schema:issn 0021-9037
62 1573-8647
63 schema:name Journal of Applied Spectroscopy
64 rdf:type schema:Periodical
65 sg:person.015253632206.54 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
66 schema:familyName Tolkachev
67 schema:givenName V. A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253632206.54
69 rdf:type schema:Person
70 sg:pub.10.1007/bf00884220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036190016
71 https://doi.org/10.1007/bf00884220
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf00899574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004044785
74 https://doi.org/10.1007/bf00899574
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0022-2313(83)90030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002973456
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0301-0104(76)87103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028351750
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1021/ja01011a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055760988
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrev.11.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420206
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrev.28.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060444583
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrev.28.684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060444584
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1246/bcsj.55.3422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023691425
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1351/pac198052122621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040154357
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1351/pac200375070975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037325148
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.426545.4 schema:alternateName BI Stepanov Institute of Physics
95 schema:name B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimost′ Ave, 220072, Minsk, Belarus
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...