Semiclassical asymmetric top in action–angle variables with binary stereodynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01

AUTHORS

V. A. Tolkachev

ABSTRACT

A model is examined for the levels of an asymmetric, rigid top based on action-angle variables and including two basis forms for its rotational stereodynamics, in each of which the analytic expression for the axial action is quantized and does not require matrix diagonalization, is more transparent, and can be used for rapid computations. The maximum (on the order of the rotational constant) deviations of the model energies of the levels from their exact values occur in the separatrix between the basis forms and fall off by orders of magnitude with increasing distance from it. The model shows that the absolute magnitude of the anisotropy in the time averaged cross section of the dipole transition for tops with arbitrary orientation of the transition dipole moment differs greatly in the stereodynamic basis forms. In each of these the anisotropy depends more strongly on the pseudoquantum numbers than on the principal quantum number, and falls off as the latter decreases. More... »

PAGES

962-968

References to SciGraph publications

  • 1932-01. Über die Eigenwerte des asymmetrischen Kreisels in ZEITSCHRIFT FÜR PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10812-013-9700-0

    DOI

    http://dx.doi.org/10.1007/s10812-013-9700-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036518592


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BI Stepanov Institute of Physics", 
              "id": "https://www.grid.ac/institutes/grid.426545.4", 
              "name": [
                "B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimost\u2019 Ave., 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tolkachev", 
            "givenName": "V. A.", 
            "id": "sg:person.015253632206.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253632206.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0301-0104(00)00054-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019715590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01342264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027964858", 
              "https://doi.org/10.1007/bf01342264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00387019508009891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042367190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2852(74)90132-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053352165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1723778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057790652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.435747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058013778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.438309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058016338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.447255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058025275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.453344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058031360"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01", 
        "datePublishedReg": "2013-01-01", 
        "description": "A model is examined for the levels of an asymmetric, rigid top based on action-angle variables and including two basis forms for its rotational stereodynamics, in each of which the analytic expression for the axial action is quantized and does not require matrix diagonalization, is more transparent, and can be used for rapid computations. The maximum (on the order of the rotational constant) deviations of the model energies of the levels from their exact values occur in the separatrix between the basis forms and fall off by orders of magnitude with increasing distance from it. The model shows that the absolute magnitude of the anisotropy in the time averaged cross section of the dipole transition for tops with arbitrary orientation of the transition dipole moment differs greatly in the stereodynamic basis forms. In each of these the anisotropy depends more strongly on the pseudoquantum numbers than on the principal quantum number, and falls off as the latter decreases.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10812-013-9700-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1005931", 
            "issn": [
              "0021-9037", 
              "1573-8647"
            ], 
            "name": "Journal of Applied Spectroscopy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "79"
          }
        ], 
        "name": "Semiclassical asymmetric top in action\u2013angle variables with binary stereodynamics", 
        "pagination": "962-968", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "adf5a169c52687f1a487c7ec825064ad9273b6dc461c62800c2cbfefed8827ea"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10812-013-9700-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036518592"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10812-013-9700-0", 
          "https://app.dimensions.ai/details/publication/pub.1036518592"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10812-013-9700-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10812-013-9700-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10812-013-9700-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10812-013-9700-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10812-013-9700-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10812-013-9700-0 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N5cca79d3fa2f4c75bee67c1e34b3248b
    4 schema:citation sg:pub.10.1007/bf01342264
    5 https://doi.org/10.1016/0022-2852(74)90132-5
    6 https://doi.org/10.1016/s0301-0104(00)00054-9
    7 https://doi.org/10.1063/1.1723778
    8 https://doi.org/10.1063/1.435747
    9 https://doi.org/10.1063/1.438309
    10 https://doi.org/10.1063/1.447255
    11 https://doi.org/10.1063/1.453344
    12 https://doi.org/10.1080/00387019508009891
    13 schema:datePublished 2013-01
    14 schema:datePublishedReg 2013-01-01
    15 schema:description A model is examined for the levels of an asymmetric, rigid top based on action-angle variables and including two basis forms for its rotational stereodynamics, in each of which the analytic expression for the axial action is quantized and does not require matrix diagonalization, is more transparent, and can be used for rapid computations. The maximum (on the order of the rotational constant) deviations of the model energies of the levels from their exact values occur in the separatrix between the basis forms and fall off by orders of magnitude with increasing distance from it. The model shows that the absolute magnitude of the anisotropy in the time averaged cross section of the dipole transition for tops with arbitrary orientation of the transition dipole moment differs greatly in the stereodynamic basis forms. In each of these the anisotropy depends more strongly on the pseudoquantum numbers than on the principal quantum number, and falls off as the latter decreases.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N41629b3e64b84c8e9390c624fdbd72e4
    20 N576d875702d6468b983145dd26c7bbc4
    21 sg:journal.1005931
    22 schema:name Semiclassical asymmetric top in action–angle variables with binary stereodynamics
    23 schema:pagination 962-968
    24 schema:productId N9249b48f89d14c579290fb92216405a1
    25 Na178503c3bbd4a44a16be4e686261127
    26 Nbe6616d0499c472a9d7a95e8c8a6fa8f
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036518592
    28 https://doi.org/10.1007/s10812-013-9700-0
    29 schema:sdDatePublished 2019-04-10T16:37
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Ndf220e3712c1401996d90fb37d83eb53
    32 schema:url http://link.springer.com/10.1007/s10812-013-9700-0
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N41629b3e64b84c8e9390c624fdbd72e4 schema:issueNumber 6
    37 rdf:type schema:PublicationIssue
    38 N576d875702d6468b983145dd26c7bbc4 schema:volumeNumber 79
    39 rdf:type schema:PublicationVolume
    40 N5cca79d3fa2f4c75bee67c1e34b3248b rdf:first sg:person.015253632206.54
    41 rdf:rest rdf:nil
    42 N9249b48f89d14c579290fb92216405a1 schema:name readcube_id
    43 schema:value adf5a169c52687f1a487c7ec825064ad9273b6dc461c62800c2cbfefed8827ea
    44 rdf:type schema:PropertyValue
    45 Na178503c3bbd4a44a16be4e686261127 schema:name doi
    46 schema:value 10.1007/s10812-013-9700-0
    47 rdf:type schema:PropertyValue
    48 Nbe6616d0499c472a9d7a95e8c8a6fa8f schema:name dimensions_id
    49 schema:value pub.1036518592
    50 rdf:type schema:PropertyValue
    51 Ndf220e3712c1401996d90fb37d83eb53 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Physical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1005931 schema:issn 0021-9037
    60 1573-8647
    61 schema:name Journal of Applied Spectroscopy
    62 rdf:type schema:Periodical
    63 sg:person.015253632206.54 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
    64 schema:familyName Tolkachev
    65 schema:givenName V. A.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253632206.54
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bf01342264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027964858
    69 https://doi.org/10.1007/bf01342264
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/0022-2852(74)90132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053352165
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/s0301-0104(00)00054-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715590
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1063/1.1723778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057790652
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1063/1.435747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058013778
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1063/1.438309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058016338
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1063/1.447255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025275
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1063/1.453344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058031360
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1080/00387019508009891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042367190
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.426545.4 schema:alternateName BI Stepanov Institute of Physics
    88 schema:name B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimost’ Ave., 220072, Minsk, Belarus
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...