Ontology type: schema:ScholarlyArticle
2011-11-12
AUTHORSL. I. Burov, A. S. Gorbatsevich, M. Jadan, V. V. Sherstnev, Yu. P. Yakovlev
ABSTRACTWe have used numerical modeling to study the effect of diffusion and fluctuations in the nonequilibrium carrier density in the active layer of injection lasers based on an InAsSb/InAsSbP heterostructure on the angular distribution of the output intensity. We show that diffusion smoothes out the nonequilibrium carrier distribution in the active layer, and the fundamental lasing mode is stable over a much broader range of stripe contact widths. At the same time, diffusional processes can lead to formation of local regions with a jump in the density of nonequilibrium charge carriers, fluctuations in which can act as a source of instability for the fundamental lasing mode. Analysis of the numerical modeling results gives qualitative agreement with experimental data on the dependence of the angular distribution of the output radiation for different stripe contact widths. More... »
PAGES733-737
http://scigraph.springernature.com/pub.10.1007/s10812-011-9525-7
DOIhttp://dx.doi.org/10.1007/s10812-011-9525-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041173231
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Burov",
"givenName": "L. I.",
"id": "sg:person.014754673501.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014754673501.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Gorbatsevich",
"givenName": "A. S.",
"id": "sg:person.013711060561.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013711060561.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tafila Technical University, College of Sciences, Applied Physics Department, Tafila, Jordan",
"id": "http://www.grid.ac/institutes/grid.449604.b",
"name": [
"Tafila Technical University, College of Sciences, Applied Physics Department, Tafila, Jordan"
],
"type": "Organization"
},
"familyName": "Jadan",
"givenName": "M.",
"id": "sg:person.015520743627.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520743627.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Sherstnev",
"givenName": "V. V.",
"id": "sg:person.011741151327.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Yakovlev",
"givenName": "Yu. P.",
"id": "sg:person.012771052533.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00331882",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040666542",
"https://doi.org/10.1007/bf00331882"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-11-12",
"datePublishedReg": "2011-11-12",
"description": "We have used numerical modeling to study the effect of diffusion and fluctuations in the nonequilibrium carrier density in the active layer of injection lasers based on an InAsSb/InAsSbP heterostructure on the angular distribution of the output intensity. We show that diffusion smoothes out the nonequilibrium carrier distribution in the active layer, and the fundamental lasing mode is stable over a much broader range of stripe contact widths. At the same time, diffusional processes can lead to formation of local regions with a jump in the density of nonequilibrium charge carriers, fluctuations in which can act as a source of instability for the fundamental lasing mode. Analysis of the numerical modeling results gives qualitative agreement with experimental data on the dependence of the angular distribution of the output radiation for different stripe contact widths.",
"genre": "article",
"id": "sg:pub.10.1007/s10812-011-9525-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1005931",
"issn": [
"0021-9037",
"1573-8647"
],
"name": "Journal of Applied Spectroscopy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "78"
}
],
"keywords": [
"InAsSb/InAsSbP heterostructure",
"active layer",
"contact width",
"InAsSbP heterostructure",
"effect of diffusion",
"carrier density",
"injection lasers",
"numerical modeling results",
"charge carrier density",
"nonequilibrium carrier density",
"numerical modeling",
"output intensity",
"carrier distribution",
"nonequilibrium charge carriers",
"charge carriers",
"source of instability",
"diffusional processes",
"modeling results",
"experimental data",
"heterostructures",
"nonequilibrium carrier distribution",
"output radiation",
"layer",
"diffusion",
"qualitative agreement",
"density",
"laser",
"width",
"local regions",
"mode",
"fluctuations",
"distribution",
"modeling",
"same time",
"broad range",
"instability",
"agreement",
"range",
"process",
"carriers",
"jump",
"effect",
"intensity",
"dependence",
"radiation",
"source",
"formation",
"results",
"time",
"analysis",
"region",
"angular distributions",
"data"
],
"name": "Effect of diffusion and fluctuations in the nonequilibrium charge carrier density on the angular distribution of the output intensity for injection lasers based on an InAsSb/InAsSbP heterostructure",
"pagination": "733-737",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041173231"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10812-011-9525-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10812-011-9525-7",
"https://app.dimensions.ai/details/publication/pub.1041173231"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_546.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10812-011-9525-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10812-011-9525-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10812-011-9525-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10812-011-9525-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10812-011-9525-7'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
79 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10812-011-9525-7 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N97791126bcfa419c9b613c9a1eda34e3 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00331882 |
5 | ″ | schema:datePublished | 2011-11-12 |
6 | ″ | schema:datePublishedReg | 2011-11-12 |
7 | ″ | schema:description | We have used numerical modeling to study the effect of diffusion and fluctuations in the nonequilibrium carrier density in the active layer of injection lasers based on an InAsSb/InAsSbP heterostructure on the angular distribution of the output intensity. We show that diffusion smoothes out the nonequilibrium carrier distribution in the active layer, and the fundamental lasing mode is stable over a much broader range of stripe contact widths. At the same time, diffusional processes can lead to formation of local regions with a jump in the density of nonequilibrium charge carriers, fluctuations in which can act as a source of instability for the fundamental lasing mode. Analysis of the numerical modeling results gives qualitative agreement with experimental data on the dependence of the angular distribution of the output radiation for different stripe contact widths. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5c70eb45289245a68c56532002a33eb9 |
12 | ″ | ″ | N9fcd3b77ddd6437991cf33b603a80d7d |
13 | ″ | ″ | sg:journal.1005931 |
14 | ″ | schema:keywords | InAsSb/InAsSbP heterostructure |
15 | ″ | ″ | InAsSbP heterostructure |
16 | ″ | ″ | active layer |
17 | ″ | ″ | agreement |
18 | ″ | ″ | analysis |
19 | ″ | ″ | angular distributions |
20 | ″ | ″ | broad range |
21 | ″ | ″ | carrier density |
22 | ″ | ″ | carrier distribution |
23 | ″ | ″ | carriers |
24 | ″ | ″ | charge carrier density |
25 | ″ | ″ | charge carriers |
26 | ″ | ″ | contact width |
27 | ″ | ″ | data |
28 | ″ | ″ | density |
29 | ″ | ″ | dependence |
30 | ″ | ″ | diffusion |
31 | ″ | ″ | diffusional processes |
32 | ″ | ″ | distribution |
33 | ″ | ″ | effect |
34 | ″ | ″ | effect of diffusion |
35 | ″ | ″ | experimental data |
36 | ″ | ″ | fluctuations |
37 | ″ | ″ | formation |
38 | ″ | ″ | heterostructures |
39 | ″ | ″ | injection lasers |
40 | ″ | ″ | instability |
41 | ″ | ″ | intensity |
42 | ″ | ″ | jump |
43 | ″ | ″ | laser |
44 | ″ | ″ | layer |
45 | ″ | ″ | local regions |
46 | ″ | ″ | mode |
47 | ″ | ″ | modeling |
48 | ″ | ″ | modeling results |
49 | ″ | ″ | nonequilibrium carrier density |
50 | ″ | ″ | nonequilibrium carrier distribution |
51 | ″ | ″ | nonequilibrium charge carriers |
52 | ″ | ″ | numerical modeling |
53 | ″ | ″ | numerical modeling results |
54 | ″ | ″ | output intensity |
55 | ″ | ″ | output radiation |
56 | ″ | ″ | process |
57 | ″ | ″ | qualitative agreement |
58 | ″ | ″ | radiation |
59 | ″ | ″ | range |
60 | ″ | ″ | region |
61 | ″ | ″ | results |
62 | ″ | ″ | same time |
63 | ″ | ″ | source |
64 | ″ | ″ | source of instability |
65 | ″ | ″ | time |
66 | ″ | ″ | width |
67 | ″ | schema:name | Effect of diffusion and fluctuations in the nonequilibrium charge carrier density on the angular distribution of the output intensity for injection lasers based on an InAsSb/InAsSbP heterostructure |
68 | ″ | schema:pagination | 733-737 |
69 | ″ | schema:productId | N55651fbb91864bf09d4be3cfba0a8d03 |
70 | ″ | ″ | Nca536c85f47841f6b847e42589cfa00e |
71 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041173231 |
72 | ″ | ″ | https://doi.org/10.1007/s10812-011-9525-7 |
73 | ″ | schema:sdDatePublished | 2022-05-20T07:27 |
74 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
75 | ″ | schema:sdPublisher | Nfc669de0889244edb3963808fd6f03e8 |
76 | ″ | schema:url | https://doi.org/10.1007/s10812-011-9525-7 |
77 | ″ | sgo:license | sg:explorer/license/ |
78 | ″ | sgo:sdDataset | articles |
79 | ″ | rdf:type | schema:ScholarlyArticle |
80 | N3b4a2949b89c42d29a06711b3ac22bfd | rdf:first | sg:person.012771052533.51 |
81 | ″ | rdf:rest | rdf:nil |
82 | N55651fbb91864bf09d4be3cfba0a8d03 | schema:name | doi |
83 | ″ | schema:value | 10.1007/s10812-011-9525-7 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N5c70eb45289245a68c56532002a33eb9 | schema:volumeNumber | 78 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | N8edaacc0a62f4fc9ace3ee29a08d8dbf | rdf:first | sg:person.013711060561.88 |
88 | ″ | rdf:rest | Nfd26ce3e4dca4092a9396d07124ff022 |
89 | N97791126bcfa419c9b613c9a1eda34e3 | rdf:first | sg:person.014754673501.25 |
90 | ″ | rdf:rest | N8edaacc0a62f4fc9ace3ee29a08d8dbf |
91 | N9fcd3b77ddd6437991cf33b603a80d7d | schema:issueNumber | 5 |
92 | ″ | rdf:type | schema:PublicationIssue |
93 | Nca536c85f47841f6b847e42589cfa00e | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1041173231 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Nf2b7c26268ed487aa2b7b7f5aeec0ab1 | rdf:first | sg:person.011741151327.16 |
97 | ″ | rdf:rest | N3b4a2949b89c42d29a06711b3ac22bfd |
98 | Nfc669de0889244edb3963808fd6f03e8 | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | Nfd26ce3e4dca4092a9396d07124ff022 | rdf:first | sg:person.015520743627.10 |
101 | ″ | rdf:rest | Nf2b7c26268ed487aa2b7b7f5aeec0ab1 |
102 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Chemical Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Physical Chemistry (incl. Structural) |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1005931 | schema:issn | 0021-9037 |
109 | ″ | ″ | 1573-8647 |
110 | ″ | schema:name | Journal of Applied Spectroscopy |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.011741151327.16 | schema:affiliation | grid-institutes:grid.423485.c |
114 | ″ | schema:familyName | Sherstnev |
115 | ″ | schema:givenName | V. V. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.012771052533.51 | schema:affiliation | grid-institutes:grid.423485.c |
119 | ″ | schema:familyName | Yakovlev |
120 | ″ | schema:givenName | Yu. P. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.013711060561.88 | schema:affiliation | grid-institutes:grid.17678.3f |
124 | ″ | schema:familyName | Gorbatsevich |
125 | ″ | schema:givenName | A. S. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013711060561.88 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.014754673501.25 | schema:affiliation | grid-institutes:grid.17678.3f |
129 | ″ | schema:familyName | Burov |
130 | ″ | schema:givenName | L. I. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014754673501.25 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.015520743627.10 | schema:affiliation | grid-institutes:grid.449604.b |
134 | ″ | schema:familyName | Jadan |
135 | ″ | schema:givenName | M. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520743627.10 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/bf00331882 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040666542 |
139 | ″ | ″ | https://doi.org/10.1007/bf00331882 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | grid-institutes:grid.17678.3f | schema:alternateName | Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus |
142 | ″ | schema:name | Belorussian State University, 4 prosp. Nezavisimosti, 220030, Minsk, Belarus |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.423485.c | schema:alternateName | A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia |
145 | ″ | schema:name | A. F. Ioffe Physicotechnical Institute, St. Petersburg, Russia |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.449604.b | schema:alternateName | Tafila Technical University, College of Sciences, Applied Physics Department, Tafila, Jordan |
148 | ″ | schema:name | Tafila Technical University, College of Sciences, Applied Physics Department, Tafila, Jordan |
149 | ″ | rdf:type | schema:Organization |