Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10-19

AUTHORS

Tim de Mooij, Marcel Janssen, Oscar Cerezo-Chinarro, Jan H. Mussgnug, Olaf Kruse, Matteo Ballottari, Roberto Bassi, Sandrine Bujaldon, Francis-André Wollman, René H. Wijffels

ABSTRACT

A major limitation in achieving high photosynthetic efficiency in microalgae mass cultures is the fact that the intensity of direct sunlight greatly exceeds the photosynthetic capacity of the cells. Due to the high pigment content of algal cells, the light absorption rate surpasses the much slower conversion rate to biochemical energy. The excess of light energy is predominantly dissipated as heat, decreasing the light use efficiency of the culture. Algae with a truncated antenna system could substantially increase biomass productivity of mass cultures because oversaturation of the photosystems and concomitant dissipation of light energy are minimized. In this study, we measured the areal biomass productivity of wild-type strain cultures and four promising antenna size mutant cultures of Chlamydomonas reinhardtii. This was performed under simulated mass culture conditions. The strains were cultivated in turbidostat controlled lab-scale panel photobioreactors at an incident light intensity of 1500 μmol photons m−2 s−1. The mutant cultures did not exhibit the expected higher productivity. The greatest mutant culture productivity values were approximate to those of the wild-type productivity of 1.9 g m−2 h−1. The high sensitivity to abrupt light shifts indicated that the mutant cultures experienced reduced fitness and higher susceptibility to photodamage. This can possibly be explained by impaired photoprotection mechanisms induced by the antenna complex alterations, or by unintended side effects of the genetic modifications. Still, if these effects could be eliminated, the principle of antenna size reduction is a promising strategy to increase productivity. Selection criteria for the future creation of antenna size mutants should, therefore, include tolerance to high light conditions. More... »

PAGES

1063-1077

References to SciGraph publications

  • 2000-10. The effect of reducing light-harvesting pigment on marine microalgal productivity in JOURNAL OF APPLIED PHYCOLOGY
  • 2001-04. Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata in JOURNAL OF APPLIED PHYCOLOGY
  • 2009-11. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis in NATURE
  • 2011-05-06. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors in PHOTOSYNTHESIS RESEARCH
  • 2003-02-12. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size in PLANTA
  • 2012-09-23. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-04-15. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance in JOURNAL OF APPLIED PHYCOLOGY
  • 2009-06-09. Antenna complexes protect Photosystem I from Photoinhibition in BMC PLANT BIOLOGY
  • 2008-07-03. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) in APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • 1997-12. Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments in JOURNAL OF APPLIED PHYCOLOGY
  • 2013-10-17. Probing the consequences of antenna modification in cyanobacteria in PHOTOSYNTHESIS RESEARCH
  • 2013-05-08. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10811-014-0427-y

    DOI

    http://dx.doi.org/10.1007/s10811-014-0427-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034454008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Mooij", 
            "givenName": "Tim", 
            "id": "sg:person.014103360211.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103360211.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Janssen", 
            "givenName": "Marcel", 
            "id": "sg:person.01171771432.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171771432.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cerezo-Chinarro", 
            "givenName": "Oscar", 
            "id": "sg:person.016230325461.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016230325461.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mussgnug", 
            "givenName": "Jan H.", 
            "id": "sg:person.0706641270.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706641270.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kruse", 
            "givenName": "Olaf", 
            "id": "sg:person.0765161624.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765161624.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ballottari", 
            "givenName": "Matteo", 
            "id": "sg:person.01260322000.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, Unit\u00e9 Mixte de Recherche 7141, Center National de la Recherche Scientifique/Universit\u00e9 Pierre et Marie Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Institut de Biologie Physico-Chimique, Unit\u00e9 Mixte de Recherche 7141, Center National de la Recherche Scientifique/Universit\u00e9 Pierre et Marie Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bujaldon", 
            "givenName": "Sandrine", 
            "id": "sg:person.01310272636.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310272636.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, Unit\u00e9 Mixte de Recherche 7141, Center National de la Recherche Scientifique/Universit\u00e9 Pierre et Marie Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Institut de Biologie Physico-Chimique, Unit\u00e9 Mixte de Recherche 7141, Center National de la Recherche Scientifique/Universit\u00e9 Pierre et Marie Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wollman", 
            "givenName": "Francis-Andr\u00e9", 
            "id": "sg:person.0661464054.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wijffels", 
            "givenName": "Ren\u00e9 H.", 
            "id": "sg:person.0725515537.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725515537.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature08587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036072520", 
              "https://doi.org/10.1038/nature08587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10811-011-9674-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039237822", 
              "https://doi.org/10.1007/s10811-011-9674-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011192832502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010226306", 
              "https://doi.org/10.1023/a:1011192832502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-011-9660-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042726800", 
              "https://doi.org/10.1007/s11120-011-9660-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008108500409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032612638", 
              "https://doi.org/10.1023/a:1008108500409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0968-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075277755", 
              "https://doi.org/10.1007/s00425-002-0968-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-013-4919-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014754237", 
              "https://doi.org/10.1007/s00253-013-4919-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12010-008-8298-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003715128", 
              "https://doi.org/10.1007/s12010-008-8298-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-9-71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049857343", 
              "https://doi.org/10.1186/1471-2229-9-71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-012-4390-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006932556", 
              "https://doi.org/10.1007/s00253-012-4390-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9940-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020827388", 
              "https://doi.org/10.1007/s11120-013-9940-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007920025419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047490341", 
              "https://doi.org/10.1023/a:1007920025419"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-10-19", 
        "datePublishedReg": "2014-10-19", 
        "description": "A major limitation in achieving high photosynthetic efficiency in microalgae mass cultures is the fact that the intensity of direct sunlight greatly exceeds the photosynthetic capacity of the cells. Due to the high pigment content of algal cells, the light absorption rate surpasses the much slower conversion rate to biochemical energy. The excess of light energy is predominantly dissipated as heat, decreasing the light use efficiency of the culture. Algae with a truncated antenna system could substantially increase biomass productivity of mass cultures because oversaturation of the photosystems and concomitant dissipation of light energy are minimized. In this study, we measured the areal biomass productivity of wild-type strain cultures and four promising antenna size mutant cultures of Chlamydomonas reinhardtii. This was performed under simulated mass culture conditions. The strains were cultivated in turbidostat controlled lab-scale panel photobioreactors at an incident light intensity of 1500\u00a0\u03bcmol photons m\u22122\u00a0s\u22121. The mutant cultures did not exhibit the expected higher productivity. The greatest mutant culture productivity values were approximate to those of the wild-type productivity of 1.9\u00a0g\u00a0m\u22122\u00a0h\u22121. The high sensitivity to abrupt light shifts indicated that the mutant cultures experienced reduced fitness and higher susceptibility to photodamage. This can possibly be explained by impaired photoprotection mechanisms induced by the antenna complex alterations, or by unintended side effects of the genetic modifications. Still, if these effects could be eliminated, the principle of antenna size reduction is a promising strategy to increase productivity. Selection criteria for the future creation of antenna size mutants should, therefore, include tolerance to high light conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10811-014-0427-y", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1100615", 
            "issn": [
              "0921-8971", 
              "1573-5176"
            ], 
            "name": "Journal of Applied Phycology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "mutant cultures", 
          "high light conditions", 
          "high photosynthetic efficiency", 
          "microalgae mass cultures", 
          "biomass productivity", 
          "mass culture conditions", 
          "photosynthetic capacity", 
          "light energy", 
          "photosynthetic efficiency", 
          "Chlamydomonas reinhardtii", 
          "size mutants", 
          "higher pigment content", 
          "photoprotection mechanisms", 
          "light use efficiency", 
          "algal cells", 
          "pigment content", 
          "genetic modification", 
          "biochemical energy", 
          "light conditions", 
          "use efficiency", 
          "concomitant dissipation", 
          "mass culture", 
          "culture conditions", 
          "complex alterations", 
          "light intensity", 
          "strain cultures", 
          "cells", 
          "reinhardtii", 
          "mutants", 
          "high productivity", 
          "productivity", 
          "photosystems", 
          "high susceptibility", 
          "fitness", 
          "culture", 
          "panel photobioreactor", 
          "areal biomass productivity", 
          "promising strategy", 
          "turbidostat", 
          "productivity values", 
          "direct sunlight", 
          "slow conversion rate", 
          "tolerance", 
          "strains", 
          "alterations", 
          "major limitation", 
          "mechanism", 
          "photobioreactor", 
          "incident light intensity", 
          "light shift", 
          "susceptibility", 
          "modification", 
          "great potential", 
          "size reduction", 
          "strategies", 
          "light absorption rate", 
          "conditions", 
          "effect", 
          "future creation", 
          "potential", 
          "sunlight", 
          "content", 
          "shift", 
          "reduction", 
          "rate", 
          "unintended side effects", 
          "selection criteria", 
          "excess", 
          "capacity", 
          "high sensitivity", 
          "study", 
          "intensity", 
          "sensitivity", 
          "antenna size reduction", 
          "efficiency", 
          "limitations", 
          "fact", 
          "conversion rate", 
          "system", 
          "oversaturation", 
          "side effects", 
          "absorption rate", 
          "energy", 
          "antenna system", 
          "values", 
          "principles", 
          "heat", 
          "creation", 
          "dissipation", 
          "criteria", 
          "photons"
        ], 
        "name": "Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized", 
        "pagination": "1063-1077", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034454008"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10811-014-0427-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10811-014-0427-y", 
          "https://app.dimensions.ai/details/publication/pub.1034454008"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_646.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10811-014-0427-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10811-014-0427-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10811-014-0427-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10811-014-0427-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10811-014-0427-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      127 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10811-014-0427-y schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author N2fb8e2cb6ff7440bbd30efcbc249ff11
    4 schema:citation sg:pub.10.1007/s00253-012-4390-8
    5 sg:pub.10.1007/s00253-013-4919-5
    6 sg:pub.10.1007/s00425-002-0968-1
    7 sg:pub.10.1007/s10811-011-9674-3
    8 sg:pub.10.1007/s11120-011-9660-2
    9 sg:pub.10.1007/s11120-013-9940-0
    10 sg:pub.10.1007/s12010-008-8298-9
    11 sg:pub.10.1023/a:1007920025419
    12 sg:pub.10.1023/a:1008108500409
    13 sg:pub.10.1023/a:1011192832502
    14 sg:pub.10.1038/nature08587
    15 sg:pub.10.1186/1471-2229-9-71
    16 schema:datePublished 2014-10-19
    17 schema:datePublishedReg 2014-10-19
    18 schema:description A major limitation in achieving high photosynthetic efficiency in microalgae mass cultures is the fact that the intensity of direct sunlight greatly exceeds the photosynthetic capacity of the cells. Due to the high pigment content of algal cells, the light absorption rate surpasses the much slower conversion rate to biochemical energy. The excess of light energy is predominantly dissipated as heat, decreasing the light use efficiency of the culture. Algae with a truncated antenna system could substantially increase biomass productivity of mass cultures because oversaturation of the photosystems and concomitant dissipation of light energy are minimized. In this study, we measured the areal biomass productivity of wild-type strain cultures and four promising antenna size mutant cultures of Chlamydomonas reinhardtii. This was performed under simulated mass culture conditions. The strains were cultivated in turbidostat controlled lab-scale panel photobioreactors at an incident light intensity of 1500 μmol photons m−2 s−1. The mutant cultures did not exhibit the expected higher productivity. The greatest mutant culture productivity values were approximate to those of the wild-type productivity of 1.9 g m−2 h−1. The high sensitivity to abrupt light shifts indicated that the mutant cultures experienced reduced fitness and higher susceptibility to photodamage. This can possibly be explained by impaired photoprotection mechanisms induced by the antenna complex alterations, or by unintended side effects of the genetic modifications. Still, if these effects could be eliminated, the principle of antenna size reduction is a promising strategy to increase productivity. Selection criteria for the future creation of antenna size mutants should, therefore, include tolerance to high light conditions.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N6055a67ef4df49f0a33c00037e263b8e
    22 N9fedb18127944280b7e70027c1701fe5
    23 sg:journal.1100615
    24 schema:keywords Chlamydomonas reinhardtii
    25 absorption rate
    26 algal cells
    27 alterations
    28 antenna size reduction
    29 antenna system
    30 areal biomass productivity
    31 biochemical energy
    32 biomass productivity
    33 capacity
    34 cells
    35 complex alterations
    36 concomitant dissipation
    37 conditions
    38 content
    39 conversion rate
    40 creation
    41 criteria
    42 culture
    43 culture conditions
    44 direct sunlight
    45 dissipation
    46 effect
    47 efficiency
    48 energy
    49 excess
    50 fact
    51 fitness
    52 future creation
    53 genetic modification
    54 great potential
    55 heat
    56 high light conditions
    57 high photosynthetic efficiency
    58 high productivity
    59 high sensitivity
    60 high susceptibility
    61 higher pigment content
    62 incident light intensity
    63 intensity
    64 light absorption rate
    65 light conditions
    66 light energy
    67 light intensity
    68 light shift
    69 light use efficiency
    70 limitations
    71 major limitation
    72 mass culture
    73 mass culture conditions
    74 mechanism
    75 microalgae mass cultures
    76 modification
    77 mutant cultures
    78 mutants
    79 oversaturation
    80 panel photobioreactor
    81 photobioreactor
    82 photons
    83 photoprotection mechanisms
    84 photosynthetic capacity
    85 photosynthetic efficiency
    86 photosystems
    87 pigment content
    88 potential
    89 principles
    90 productivity
    91 productivity values
    92 promising strategy
    93 rate
    94 reduction
    95 reinhardtii
    96 selection criteria
    97 sensitivity
    98 shift
    99 side effects
    100 size mutants
    101 size reduction
    102 slow conversion rate
    103 strain cultures
    104 strains
    105 strategies
    106 study
    107 sunlight
    108 susceptibility
    109 system
    110 tolerance
    111 turbidostat
    112 unintended side effects
    113 use efficiency
    114 values
    115 schema:name Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized
    116 schema:pagination 1063-1077
    117 schema:productId N689d5c2279524fa7a36aee6c5c0bf0e5
    118 Nbdfe35d3cc6541e6a1b75cce95288026
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034454008
    120 https://doi.org/10.1007/s10811-014-0427-y
    121 schema:sdDatePublished 2022-10-01T06:40
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher N508c7d31c2654ed49ec5ce5fbdf247d6
    124 schema:url https://doi.org/10.1007/s10811-014-0427-y
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N2fb8e2cb6ff7440bbd30efcbc249ff11 rdf:first sg:person.014103360211.47
    129 rdf:rest Nbb51a91fb56c4589999f849cf93c8670
    130 N377f04d8e79e418b8d8a140c339cca05 rdf:first sg:person.016230325461.03
    131 rdf:rest Ne2eba25ec83a4e369e86ee35ad5ac64d
    132 N3a4bf9d26f95462cb999e97fb56ae2e4 rdf:first sg:person.01310272636.85
    133 rdf:rest N862d6ff19a064fb6b39a0f2a69318d88
    134 N508c7d31c2654ed49ec5ce5fbdf247d6 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 N6055a67ef4df49f0a33c00037e263b8e schema:volumeNumber 27
    137 rdf:type schema:PublicationVolume
    138 N689d5c2279524fa7a36aee6c5c0bf0e5 schema:name dimensions_id
    139 schema:value pub.1034454008
    140 rdf:type schema:PropertyValue
    141 N7426aa3210fe4827b0e93759af595186 rdf:first sg:person.01260322000.32
    142 rdf:rest N8da7190630a24a2f966ef276be8d989c
    143 N862d6ff19a064fb6b39a0f2a69318d88 rdf:first sg:person.0661464054.08
    144 rdf:rest Na6f4c25bf42b4fe2b83c54f99bf23e64
    145 N8da7190630a24a2f966ef276be8d989c rdf:first sg:person.0605371157.35
    146 rdf:rest N3a4bf9d26f95462cb999e97fb56ae2e4
    147 N9fedb18127944280b7e70027c1701fe5 schema:issueNumber 3
    148 rdf:type schema:PublicationIssue
    149 Na63b3dfb148141b49178cd244c6baec6 rdf:first sg:person.0765161624.90
    150 rdf:rest N7426aa3210fe4827b0e93759af595186
    151 Na6f4c25bf42b4fe2b83c54f99bf23e64 rdf:first sg:person.0725515537.30
    152 rdf:rest rdf:nil
    153 Nbb51a91fb56c4589999f849cf93c8670 rdf:first sg:person.01171771432.05
    154 rdf:rest N377f04d8e79e418b8d8a140c339cca05
    155 Nbdfe35d3cc6541e6a1b75cce95288026 schema:name doi
    156 schema:value 10.1007/s10811-014-0427-y
    157 rdf:type schema:PropertyValue
    158 Ne2eba25ec83a4e369e86ee35ad5ac64d rdf:first sg:person.0706641270.54
    159 rdf:rest Na63b3dfb148141b49178cd244c6baec6
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Plant Biology
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1100615 schema:issn 0921-8971
    167 1573-5176
    168 schema:name Journal of Applied Phycology
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01171771432.05 schema:affiliation grid-institutes:grid.4818.5
    172 schema:familyName Janssen
    173 schema:givenName Marcel
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171771432.05
    175 rdf:type schema:Person
    176 sg:person.01260322000.32 schema:affiliation grid-institutes:grid.5611.3
    177 schema:familyName Ballottari
    178 schema:givenName Matteo
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32
    180 rdf:type schema:Person
    181 sg:person.01310272636.85 schema:affiliation grid-institutes:grid.450875.b
    182 schema:familyName Bujaldon
    183 schema:givenName Sandrine
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310272636.85
    185 rdf:type schema:Person
    186 sg:person.014103360211.47 schema:affiliation grid-institutes:grid.4818.5
    187 schema:familyName de Mooij
    188 schema:givenName Tim
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103360211.47
    190 rdf:type schema:Person
    191 sg:person.016230325461.03 schema:affiliation grid-institutes:grid.4818.5
    192 schema:familyName Cerezo-Chinarro
    193 schema:givenName Oscar
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016230325461.03
    195 rdf:type schema:Person
    196 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5611.3
    197 schema:familyName Bassi
    198 schema:givenName Roberto
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    200 rdf:type schema:Person
    201 sg:person.0661464054.08 schema:affiliation grid-institutes:grid.450875.b
    202 schema:familyName Wollman
    203 schema:givenName Francis-André
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08
    205 rdf:type schema:Person
    206 sg:person.0706641270.54 schema:affiliation grid-institutes:grid.7491.b
    207 schema:familyName Mussgnug
    208 schema:givenName Jan H.
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706641270.54
    210 rdf:type schema:Person
    211 sg:person.0725515537.30 schema:affiliation grid-institutes:grid.4818.5
    212 schema:familyName Wijffels
    213 schema:givenName René H.
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725515537.30
    215 rdf:type schema:Person
    216 sg:person.0765161624.90 schema:affiliation grid-institutes:grid.7491.b
    217 schema:familyName Kruse
    218 schema:givenName Olaf
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765161624.90
    220 rdf:type schema:Person
    221 sg:pub.10.1007/s00253-012-4390-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006932556
    222 https://doi.org/10.1007/s00253-012-4390-8
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00253-013-4919-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014754237
    225 https://doi.org/10.1007/s00253-013-4919-5
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00425-002-0968-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277755
    228 https://doi.org/10.1007/s00425-002-0968-1
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s10811-011-9674-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039237822
    231 https://doi.org/10.1007/s10811-011-9674-3
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11120-011-9660-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042726800
    234 https://doi.org/10.1007/s11120-011-9660-2
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s11120-013-9940-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020827388
    237 https://doi.org/10.1007/s11120-013-9940-0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s12010-008-8298-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715128
    240 https://doi.org/10.1007/s12010-008-8298-9
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1023/a:1007920025419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047490341
    243 https://doi.org/10.1023/a:1007920025419
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1023/a:1008108500409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032612638
    246 https://doi.org/10.1023/a:1008108500409
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1023/a:1011192832502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010226306
    249 https://doi.org/10.1023/a:1011192832502
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
    252 https://doi.org/10.1038/nature08587
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1471-2229-9-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857343
    255 https://doi.org/10.1186/1471-2229-9-71
    256 rdf:type schema:CreativeWork
    257 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Center National de la Recherche Scientifique/Université Pierre et Marie Curie, 75005, Paris, France
    258 schema:name Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Center National de la Recherche Scientifique/Université Pierre et Marie Curie, 75005, Paris, France
    259 rdf:type schema:Organization
    260 grid-institutes:grid.4818.5 schema:alternateName Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands
    261 schema:name Bioprocess Engineering, AlgaePARC, Wageningen University, PO box 16, 6700 AA, Wageningen, The Netherlands
    262 rdf:type schema:Organization
    263 grid-institutes:grid.5611.3 schema:alternateName Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
    264 schema:name Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
    265 rdf:type schema:Organization
    266 grid-institutes:grid.7491.b schema:alternateName Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
    267 schema:name Algae Biotechnology & Bioenergy Group, Department of Biology, Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...