Strongly regular graphs from reducible cyclic codes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-30

AUTHORS

Minjia Shi, Tor Helleseth, Patrick Solé

ABSTRACT

Let p be a prime number. Reducible cyclic codes of rank 2 over Zpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^m}$$\end{document} are shown to have exactly two Hamming weights in some cases. Their weight distribution is computed explicitly. When these codes are projective, the coset graphs of their dual codes are strongly regular. The spectra of these graphs are determined. More... »

PAGES

1-12

References to SciGraph publications

  • 2008-02-28. Ring geometries, two-weight codes, and strongly regular graphs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2012. Spectra of Graphs in NONE
  • 1989. Distance-Regular Graphs in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10801-020-01006-6

    DOI

    http://dx.doi.org/10.1007/s10801-020-01006-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1136786593


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Selmer center, Department of Informatics, University of Bergen, Bergen, Norway", 
              "id": "http://www.grid.ac/institutes/grid.7914.b", 
              "name": [
                "The Selmer center, Department of Informatics, University of Bergen, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Helleseth", 
            "givenName": "Tor", 
            "id": "sg:person.015001362132.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001362132.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "I2M, CNRS, Centrale Marseille, University of Aix-Marseille, Marseille, France", 
              "id": "http://www.grid.ac/institutes/grid.473594.8", 
              "name": [
                "I2M, CNRS, Centrale Marseille, University of Aix-Marseille, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Patrick", 
            "id": "sg:person.012750235663.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-1939-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032245142", 
              "https://doi.org/10.1007/978-1-4614-1939-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-007-9136-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038465688", 
              "https://doi.org/10.1007/s10623-007-9136-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-03-30", 
        "datePublishedReg": "2021-03-30", 
        "description": "Let p be a prime number. Reducible cyclic codes of rank 2 over Zpm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {Z}_{p^m}$$\\end{document} are shown to have exactly two Hamming weights in some cases. Their weight distribution is computed explicitly. When these codes are projective, the coset graphs of their dual codes are strongly regular. The spectra of these graphs are determined.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10801-020-01006-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8306127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136470", 
            "issn": [
              "0925-9899", 
              "1572-9192"
            ], 
            "name": "Journal of Algebraic Combinatorics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "cyclic codes", 
          "coset graphs", 
          "regular graphs", 
          "prime number", 
          "rank 2", 
          "graph", 
          "dual code", 
          "reducible cyclic codes", 
          "code", 
          "distribution", 
          "number", 
          "spectra", 
          "weight distribution", 
          "cases", 
          "weight"
        ], 
        "name": "Strongly regular graphs from reducible cyclic codes", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1136786593"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10801-020-01006-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10801-020-01006-6", 
          "https://app.dimensions.ai/details/publication/pub.1136786593"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10801-020-01006-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10801-020-01006-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10801-020-01006-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10801-020-01006-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10801-020-01006-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      22 PREDICATES      41 URIs      30 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10801-020-01006-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1d9c8abb7e774d6ea00dc5e15b615d6c
    4 schema:citation sg:pub.10.1007/978-1-4614-1939-6
    5 sg:pub.10.1007/978-3-642-74341-2
    6 sg:pub.10.1007/s10623-007-9136-8
    7 schema:datePublished 2021-03-30
    8 schema:datePublishedReg 2021-03-30
    9 schema:description Let p be a prime number. Reducible cyclic codes of rank 2 over Zpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{p^m}$$\end{document} are shown to have exactly two Hamming weights in some cases. Their weight distribution is computed explicitly. When these codes are projective, the coset graphs of their dual codes are strongly regular. The spectra of these graphs are determined.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf sg:journal.1136470
    14 schema:keywords cases
    15 code
    16 coset graphs
    17 cyclic codes
    18 distribution
    19 dual code
    20 graph
    21 number
    22 prime number
    23 rank 2
    24 reducible cyclic codes
    25 regular graphs
    26 spectra
    27 weight
    28 weight distribution
    29 schema:name Strongly regular graphs from reducible cyclic codes
    30 schema:pagination 1-12
    31 schema:productId N355b171d1f1348cfb5313437d598ea73
    32 N6b267b4e146241138011353b2204c33d
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136786593
    34 https://doi.org/10.1007/s10801-020-01006-6
    35 schema:sdDatePublished 2022-01-01T19:03
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N3ee9fe7e786b498984a98deff6479925
    38 schema:url https://doi.org/10.1007/s10801-020-01006-6
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N1d9c8abb7e774d6ea00dc5e15b615d6c rdf:first sg:person.012012432235.16
    43 rdf:rest N79117d94db8c431ea451c7dd9d98dbc7
    44 N355b171d1f1348cfb5313437d598ea73 schema:name dimensions_id
    45 schema:value pub.1136786593
    46 rdf:type schema:PropertyValue
    47 N3ee9fe7e786b498984a98deff6479925 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N6b267b4e146241138011353b2204c33d schema:name doi
    50 schema:value 10.1007/s10801-020-01006-6
    51 rdf:type schema:PropertyValue
    52 N79117d94db8c431ea451c7dd9d98dbc7 rdf:first sg:person.015001362132.15
    53 rdf:rest Nb452e6dd0e7641cbb1dfe7f8cea710a0
    54 Nb452e6dd0e7641cbb1dfe7f8cea710a0 rdf:first sg:person.012750235663.02
    55 rdf:rest rdf:nil
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:grant.8306127 http://pending.schema.org/fundedItem sg:pub.10.1007/s10801-020-01006-6
    63 rdf:type schema:MonetaryGrant
    64 sg:journal.1136470 schema:issn 0925-9899
    65 1572-9192
    66 schema:name Journal of Algebraic Combinatorics
    67 schema:publisher Springer Nature
    68 rdf:type schema:Periodical
    69 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    70 schema:familyName Shi
    71 schema:givenName Minjia
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    73 rdf:type schema:Person
    74 sg:person.012750235663.02 schema:affiliation grid-institutes:grid.473594.8
    75 schema:familyName Solé
    76 schema:givenName Patrick
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750235663.02
    78 rdf:type schema:Person
    79 sg:person.015001362132.15 schema:affiliation grid-institutes:grid.7914.b
    80 schema:familyName Helleseth
    81 schema:givenName Tor
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001362132.15
    83 rdf:type schema:Person
    84 sg:pub.10.1007/978-1-4614-1939-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032245142
    85 https://doi.org/10.1007/978-1-4614-1939-6
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
    88 https://doi.org/10.1007/978-3-642-74341-2
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/s10623-007-9136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038465688
    91 https://doi.org/10.1007/s10623-007-9136-8
    92 rdf:type schema:CreativeWork
    93 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    94 schema:name Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
    95 rdf:type schema:Organization
    96 grid-institutes:grid.473594.8 schema:alternateName I2M, CNRS, Centrale Marseille, University of Aix-Marseille, Marseille, France
    97 schema:name I2M, CNRS, Centrale Marseille, University of Aix-Marseille, Marseille, France
    98 rdf:type schema:Organization
    99 grid-institutes:grid.7914.b schema:alternateName The Selmer center, Department of Informatics, University of Bergen, Bergen, Norway
    100 schema:name The Selmer center, Department of Informatics, University of Bergen, Bergen, Norway
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...